nearly toric Schubert varieties and Dyck paths

Néstor F. Díaz Morera (joint with Mahir B. Can)

XIII-SE Lie Theory Workshop
NC State University, Raleigh, USA
May 12, 2023

Sacred number

Sacred number $;$

Sacred number

$$
\left|\mathfrak{S}_{3}^{312}\right|=\frac{1}{3+1}\binom{2 \cdot 3}{3}=\left|\mathscr{L}_{3}^{+}\right| \rightsquigarrow \mathfrak{S}_{n}^{312} \longleftrightarrow ? \mathscr{L}_{n}^{+}
$$

Sacred number

$$
\mathfrak{S}_{3}:=\left\{\begin{array}{ll}
123 & 132 \\
213 & 231 \\
312 & 321
\end{array}\right\}
$$

$$
\left|\mathfrak{S}_{3}^{312}\right|=\frac{1}{3+1}\binom{2 \cdot 3}{3}=\left|\mathscr{L}_{3}^{+}\right| \rightsquigarrow \mathfrak{S}_{n}^{312} \longleftrightarrow \mathscr{L}_{n}^{+}
$$

Sacred number ©

Sacred number ©

Sacred number

Dyck paths \mathscr{L}_{n}^{+}

- A Dyck word of a Dyck path π is word consisting of $N(1,0)$ and $E(0,1)$ letters.

Dyck paths \mathscr{L}_{n}^{+}

- A Dyck word of a Dyck path π is word consisting of $N(1,0)$ and $E(0,1)$ letters.
- a Dyck path π is an elbow if its word is NN...NE...E, and it is a ledge if its Dyck word is $\pi=\underbrace{\text { NN...N }}_{n-1} \underbrace{E . . . E N E . . . E E}_{n}$. A Dyck word π^{\prime} is a E_{+}extension of π if $\pi^{\prime}=\mathrm{E} \pi$.

Dyck paths \mathscr{L}_{n}^{+}

- A Dyck word of a Dyck path π is word consisting of $N(1,0)$ and $E(0,1)$ letters.
- a Dyck path π is an elbow if its word is NN...NE...E, and it is a ledge if its Dyck word is $\pi=\underbrace{\text { NN...N }}_{n-1} \underbrace{E . . . E N E . . . E E .}_{n}$. A Dyck word π^{\prime} is a E_{+}extension of π if $\pi^{\prime}=\mathrm{E} \pi$.
- A portion τ of $\pi^{(r)}$ is said to be a connected component if τ starts and ends at the r-th diagonal $y-x-r=0$, and these are the only lattice points it touches, for $0 \leq r \leq n-1$.

Dyck paths \mathscr{L}_{n}^{+}

- A Dyck word of a Dyck path π is word consisting of $N(1,0)$ and $E(0,1)$ letters.
- a Dyck path π is an elbow if its word is NN...NE...E, and it is a ledge if its Dyck word is $\pi=\underbrace{\text { NN...N }}_{n-1} \underbrace{E . . . E N E . . . E E .}_{n}$. A Dyck word π^{\prime} is a E_{+}extension of π if $\pi^{\prime}=\mathrm{E} \pi$.
- A portion τ of $\pi^{(r)}$ is said to be a connected component if τ starts and ends at the r-th diagonal $y-x-r=0$, and these are the only lattice points it touches, for $0 \leq r \leq n-1$.

A Dyck path π is said to be spherical if every connected component of $\pi^{(0)}$ is either an elbow or a ledge, or every connected component of $\pi^{(1)}$ is an elbow, or a ledge whose E_{+}extension is the initial step of a connected component of $\pi^{(0)}$.

Spherical Dyck paths

Elbow

Elbow

Ledge

Spherical varieties

An irreducible normal \mathbf{G}-variety \mathbf{Y} is called a spherical \mathbf{G}-variety if a Borel subgroup of \mathbf{G} has an open orbit in \mathbf{Y}.

Spherical varieties

An irreducible normal \mathbf{G}-variety \mathbf{Y} is called a spherical \mathbf{G}-variety if a Borel subgroup of \mathbf{G} has an open orbit in \mathbf{Y}.

The \mathbf{T}-complexity of \mathbf{Y}, denoted by $c_{\mathbf{T}}(\mathbf{Y})$, is the codimension of the maximal torus \mathbf{T} in \mathbf{Y}. If the \mathbf{T}-complexity of \mathbf{T} is 1 , we call \mathbf{Y} a nearly toric variety .

Spherical varieties

An irreducible normal G-variety \mathbf{Y} is called a spherical \mathbf{G}-variety if a Borel subgroup of \mathbf{G} has an open orbit in \mathbf{Y}.

The \mathbf{T}-complexity of \mathbf{Y}, denoted by $c_{\mathbf{T}}(\mathbf{Y})$, is the codimension of the maximal torus \mathbf{T} in \mathbf{Y}. If the \mathbf{T}-complexity of \mathbf{T} is 1 , we call \mathbf{Y} a nearly toric variety .

Theorem (Brion, Vinberg-1986)
\mathbf{Y} is spherical if the codimension of a general \mathbf{B}-orbit is zero. The codimension $\mathrm{c}_{\mathbf{B}}(\mathbf{Y})$ is called the complexity .

Spherical varieties

An irreducible normal G-variety \mathbf{Y} is called a spherical \mathbf{G}-variety if a Borel subgroup of \mathbf{G} has an open orbit in \mathbf{Y}.

The \mathbf{T}-complexity of \mathbf{Y}, denoted by $c_{\mathbf{T}}(\mathbf{Y})$, is the codimension of the maximal torus \mathbf{T} in \mathbf{Y}. If the \mathbf{T}-complexity of \mathbf{T} is 1 , we call \mathbf{Y} a nearly toric variety .

Theorem (Brion, Vinberg-1986)
\mathbf{Y} is spherical if the codimension of a general \mathbf{B}-orbit is zero. The codimension $c_{\mathbf{B}}(\mathbf{Y})$ is called the complexity .

Ubiquitous examples:

- Toric varieties.
- Wonderful varieties.
- Reductive monoids.

Schubert varieties

The Ehresmann-Bruhat-Chevalley decomposition

$$
\mathrm{GL}_{n}=\bigsqcup_{w \in \mathfrak{S}_{n}} \mathbf{B} w \mathbf{B}, \quad \mathfrak{S}_{n} \cong \mathbf{N}_{\mathrm{GL}_{n}}(\mathbf{T}) / \mathbf{T} \rightsquigarrow \mathrm{GL}_{n}(\mathbb{C}) / \mathbf{B}=\bigsqcup_{w \in \mathfrak{S}_{n}} \mathbf{B} w \mathbf{B} / \mathbf{B}
$$

Schubert varieties

The Ehresmann-Bruhat-Chevalley decomposition

$$
\mathrm{GL}_{n}=\bigsqcup_{w \in \mathfrak{S}_{n}} \mathbf{B} w \mathbf{B}, \quad \mathfrak{S}_{n} \cong \mathbf{N}_{\mathrm{GL}_{n}}(\mathbf{T}) / \mathbf{T} \rightsquigarrow \mathrm{GL}_{n}(\mathbb{C}) / \mathbf{B}=\bigsqcup_{w \in \mathfrak{S}_{n}} \mathbf{B} w \mathbf{B} / \mathbf{B}
$$

The Schubert variety $X_{w} \mathbf{B}$ associated with w is the \mathbf{B}-orbit closure

$$
X_{w \mathbf{B}}:=\overline{\mathbf{B} w \mathbf{B} / \mathbf{B}} .
$$

- $X_{w} \mathbf{B}$ is normal.
- The irreducible representations of GL_{n} can be constructed via line bundles on $\mathrm{GL}_{n} / \mathbf{B}$.

Combinatorial gadget I

The $X_{v \mathbf{B}} \subseteq X_{w}$ B induces a partial order on the Weyl group.

The Bruhat-Chevalley order on \mathfrak{S}_{n} is defined by

$$
v \leq w \Longleftrightarrow X_{v \mathbf{B}} \subseteq X_{w \mathbf{B}}, \quad \ell(w)=\operatorname{dim} X_{w \mathbf{B}} .
$$

Combinatorial gadget I

The X_{v} в $\subseteq X_{w}$ B induces a partial order on the Weyl group.

The Bruhat-Chevalley order on \mathfrak{S}_{n} is defined by

$$
v \leq w \Longleftrightarrow X_{v \mathbf{B}} \subseteq X_{w \mathbf{B}}, \quad \ell(w)=\operatorname{dim} X_{w \mathbf{B}} .
$$

If $w=s_{i_{1}} \cdots s_{i \ell}$ and ℓ is minimal among all such expressions, then $\ell:=\ell(w)$ is said to be the length of w, and the expression $s_{i_{1}} \cdots s_{i_{\ell}}$ is called a reduced decomposition for w

Combinatorial gadget I

The X_{v} B $\subseteq X_{w}$ B induces a partial order on the Weyl group.

The Bruhat-Chevalley order on \mathfrak{S}_{n} is defined by

$$
v \leq w \Longleftrightarrow X_{v \mathbf{B}} \subseteq X_{w \mathbf{B}}, \quad \ell(w)=\operatorname{dim} X_{w \mathbf{B}}
$$

If $w=s_{i_{1}} \cdots s_{i \ell}$ and ℓ is minimal among all such expressions, then $\ell:=\ell(w)$ is said to be the length of w, and the expression $s_{i_{1}} \cdots s_{i_{\ell}}$ is called a reduced decomposition for w

- $\operatorname{Red}(321)=\left\{s_{1} s_{2} s_{1}, s_{2} s_{1} s_{2}\right\}$
$v \leq w \Longleftrightarrow$ a reduced decomposition of v is substring (subword) of some reduced decomposition for v.
- $1432 \leq 3412$ as $s_{2} s_{3} s_{2}$ is a subword of $s_{2} s_{1} s_{3} s_{2}$.

Explanatory example

Combinatorial gadget II

For $w \in \mathfrak{S}_{n}$ and $p \in \mathfrak{S}_{k}$ with $k \leq n$. The permutation w contains the pattern p if there exits a sequence $1 \leq i_{1}<\cdots<i_{k} \leq n$ such that $w\left(i_{1}\right) \cdots w\left(i_{k}\right)$ is in the same relative order as $p(1) \cdots p(k)$. If w does not contain p, then w is said to p-avoiding.

Combinatorial gadget II

For $w \in \mathfrak{S}_{n}$ and $p \in \mathfrak{S}_{k}$ with $k \leq n$. The permutation w contains the pattern p if there exits a sequence $1 \leq i_{1}<\cdots<i_{k} \leq n$ such that $w\left(i_{1}\right) \cdots w\left(i_{k}\right)$ is in the same relative order as $p(1) \cdots p(k)$. If w does not contain p, then w is said to p-avoiding.

We call X_{w} B a partition Schubert variety (Ding's variety) if w is a 312-avoiding permutation.

- Let \mathfrak{S}_{n}^{312} denote this family.
- $w=23187695410$ is in \mathfrak{S}_{10}^{312}.

Combinatorial gadget II

For $w \in \mathfrak{S}_{n}$ and $p \in \mathfrak{S}_{k}$ with $k \leq n$. The permutation w contains the pattern p if there exits a sequence $1 \leq i_{1}<\cdots<i_{k} \leq n$ such that $w\left(i_{1}\right) \cdots w\left(i_{k}\right)$ is in the same relative order as $p(1) \cdots p(k)$. If w does not contain p, then w is said to p-avoiding.

We call X_{w} B a partition Schubert variety (Ding's variety) if w is a 312-avoiding permutation.

- Let \mathfrak{S}_{n}^{312} denote this family.
- $w=23187695410$ is in \mathfrak{S}_{10}^{312}.

Theorem (Lakshmibai, Sandhya-1990)
The variety $X_{w} \mathbf{B}$ is smooth $\Longleftrightarrow w$ avoids the patterns 3412 and 4231 .

- \mathfrak{S}_{n}^{312} is smooth.

Explanatory example

Combinatorial gadget: III

Let $\mathfrak{S}_{\mathbf{I}}$ be the parabolic subgroup of \mathfrak{S}_{n} generated by $\mathbf{I} \subseteq S$ and $w_{0}(\mathbf{I})$ its longest element .

- Denote $J(w):=\{s \in S: \ell(s w)<\ell(w)\}$ the left descent set of w
- $w=23187695410 \rightsquigarrow \mathrm{~J}(w)=\left\{s_{2}, s_{4}, s_{5}, s_{6}, s_{7}\right\}$.
- A standard Coxeter element c in $\mathfrak{S}_{\boldsymbol{1}}$ is any product of the elements of I listed in some order.
- $\mathfrak{S}_{J(w)}=\langle\mathrm{J}(w)\rangle \rightsquigarrow w_{0}(\mathrm{~J}(w))=s_{1} s_{4} s_{5} s_{4} s_{6} s_{5} s_{4} s_{7} s_{6} s_{5} s_{4}$.

Combinatorial gadget: III

Let $\mathfrak{S}_{\mathbf{I}}$ be the parabolic subgroup of \mathfrak{S}_{n} generated by $\mathbf{I} \subseteq S$ and $w_{0}(\mathbf{I})$ its longest element .

- Denote $J(w):=\{s \in S: \ell(s w)<\ell(w)\}$ the left descent set of w
- $w=23187695410 \rightsquigarrow \mathrm{~J}(w)=\left\{s_{2}, s_{4}, s_{5}, s_{6}, s_{7}\right\}$.
- A standard Coxeter element c in $\mathfrak{S}_{\boldsymbol{l}}$ is any product of the elements of I listed in some order.
$-\mathfrak{S}_{J(w)}=\langle J(w)\rangle \rightsquigarrow w_{0}(J(w))=s_{1} s_{4} s_{5} s_{4} s_{6} s_{5} s_{4} s_{7} s_{6} s_{5} s_{4}$.
Let \mathbf{L} denote the standard Levi factor of the parabolic subgroup of $X_{w} \mathbf{B}$ in GL_{n}. Let $\mathbf{B}_{\mathbf{L}}$ be Borel subgroup of \mathbf{L} containing \mathbf{T}. The Schubert variety $X_{w} \mathbf{B}$ is spherical if $\mathbf{B}_{\mathbf{L}}$ has only finitely many orbits in X_{w} B. In fact, $\mathbf{L}_{\mathbf{I}}$ is given by $\mathrm{J}(w)$.

Classification

For which $w \in \mathfrak{S}_{n}, c_{\mathbf{B}_{\mathbf{L}}}\left(X_{w} \mathbf{B}\right)=0$?

Classification

For which $w \in \mathfrak{S}_{n}, c_{\mathbf{B}_{\mathbf{L}}}\left(X_{w} \mathbf{B}\right)=0$?

Theorem (Gao, Hodges, Yong-2022)
$c_{\mathbf{B}_{L}}\left(X_{w \mathbf{B}}\right)=0 \Longleftrightarrow w_{0}(J(w)) w$ is a standard Coxeter element (Boolean).

- $w=23187695410 \rightsquigarrow w_{0}(\mathrm{~J}(w)) w=s_{2} s_{8} s_{7}$.

Classification

For which $w \in \mathfrak{S}_{n}, c_{\mathbf{B}_{\mathrm{L}}}\left(X_{w} \mathbf{B}\right)=0$?

Theorem (Gao, Hodges, Yong-2022)
$c_{\mathbf{B}_{L}}\left(X_{w \mathbf{B}}\right)=0 \Longleftrightarrow w_{0}(J(w)) w$ is a standard Coxeter element (Boolean).

- $w=23187695410 \rightsquigarrow w_{0}(\mathrm{~J}(w)) w=s_{2} s_{8} s_{7}$.

Theorem (Gaetz-2022)

$c_{\mathbf{B}_{L}}\left(X_{w} \mathbf{B}\right)=0 \Longleftrightarrow w$ avoids the following 21 patterns

$$
\mathscr{P}:=\left\{\begin{array}{lllllll}
24531 & 25314 & 25341 & 34512 & 34521 & 35412 & 35421 \\
42531 & 45123 & 45213 & 45231 & 45312 & 52314 & 52341 \\
53124 & 53142 & 53412 & 53421 & 54123 & 54213 & 54231
\end{array}\right\}
$$

New characterization:

Theorem (Can-D.)
Let w be in \mathfrak{S}_{n}^{312}. Let π denote the Dyck path of size n corresponding to w. Then X_{w} B is a spherical Schubert variety if and only if π is spherical.

New characterization:
Theorem (Can-D.)
Let w be in \mathfrak{S}_{n}^{312}. Let π denote the Dyck path of size n corresponding to w. Then X_{w} B is a spherical Schubert variety if and only if π is spherical.

Sketchy proof: Bandlow-Killpatrick
Let $w=23187695410$ be in \mathfrak{S}_{10}^{312}.

Sketchy proof: Bandlow-Killpatrick

Let $w=23187695410$ be in \mathfrak{S}_{10}^{312}.

$$
\begin{aligned}
w s_{7} s_{8} & =23187654910:=w^{1} \\
w^{1} s_{4} s_{5} s_{6} s_{7} & =23176548910:=w^{2} \\
w^{2} s_{4} s_{5} s_{6} & =23165478910:=w^{3} \\
w^{3} s_{4} s_{5} & =23154678910:=w^{4} \\
w^{4} s_{4} & =23145678910:=w^{5} \\
w^{5} s_{2} & =21345678910:=w^{6} \\
w^{6} s_{1} & =12345678910:=\mathrm{id}
\end{aligned}
$$

Sketchy proof: Bandlow-Killpatrick

Let $w=23187695410$ be in \mathfrak{S}_{10}^{312}.

$$
\begin{aligned}
w s_{7} s_{8} & =23187654910:=w^{1} \\
w^{1} s_{4} s_{5} s_{6} s_{7} & =23176548910:=w^{2} \\
w^{2} s_{4} s_{5} s_{6} & =23165478910:=w^{3} \\
w^{3} s_{4} s_{5} & =23154678910:=w^{4} \\
w^{4} s_{4} & =23145678910:=w^{5} \\
w^{5} s_{2} & =21345678910:=w^{6} \\
w^{6} s_{1} & =12345678910:=\mathrm{id}
\end{aligned}
$$

$$
\underbrace{\left(s_{7} s_{8}\left|s_{4} s_{5} s_{6} s_{7}\right| s_{4} s_{5} s_{6}\left|s_{4} s_{5}\right| s_{4}\left|s_{2}\right| s_{1}\right)^{-1}}_{\operatorname{Red}(w)}
$$

Sketchy proof: Bandlow-Killpatrick Let $w=23187695410$ be in \mathfrak{S}_{10}^{312}.

$$
\begin{aligned}
& w s_{7} s_{8}=23187654910:=w^{1} \\
& w^{1} s_{4} s_{5} s_{6} s_{7}=23176548910:=w^{2} \\
& w^{2} s_{4} s_{5} s_{6}=23165478910:=w^{3} \\
& w^{3} S_{4} S_{5}=23154678910:=w^{4} \\
& w^{4} s_{4}=23145678910:=w^{5} \\
& w^{5} s_{2}=21345678910:=w^{6} \\
& w^{6} s_{1}=12345678910:=\mathrm{id} \\
& \underbrace{\left(s_{7} s_{8}\left|s_{4} s_{5} s_{6} s_{7}\right| s_{4} s_{5} s_{6}\left|s_{4} s_{5}\right| s_{4}\left|s_{2}\right| s_{1}\right)^{-1}}_{\operatorname{Red}(w)}
\end{aligned}
$$

Sketchy proof: Bandlow-Killpatrick Let $w=23187695410$ be in \mathfrak{S}_{10}^{312}.

$$
\begin{aligned}
w s_{7} s_{8} & =23187654910:=w^{1} \\
w^{1} s_{4} s_{5} s_{6} s_{7} & =23176548910:=w^{2} \\
w^{2} s_{4} s_{5} s_{6} & =23165478910:=w^{3} \\
w^{3} s_{4} s_{5} & =23154678910:=w^{4} \\
w^{4} s_{4} & =23145678910:=w^{5} \\
w^{5} s_{2} & =21345678910:=w^{6} \\
w^{6} s_{1} & =12345678910:=\mathrm{id}
\end{aligned}
$$

$$
\underbrace{\left(s_{7} s_{8}\left|s_{4} s_{5} s_{6} s_{7}\right| s_{4} s_{5} s_{6}\left|s_{4} s_{5}\right| s_{4}\left|s_{2}\right| s_{1}\right)^{-1}}_{\operatorname{Red}(w)}
$$

$\mathfrak{S}_{n}^{312} \underset{\phi}{\stackrel{\psi}{\longleftrightarrow}} \mathscr{L}_{n, n}^{+} ; \quad \ell(w) \longmapsto \operatorname{area}(\psi(w)):=\pi$

Theorem (Lee, Masuda, Park-2021)

- $c_{\mathbf{T}}\left(X_{w} \mathbf{B}\right)=1$ and smooth $\Longleftrightarrow w$ contains the pattern 321 exactly once and avoids $3412 \Longleftrightarrow$ there exists a reduced word of w containing $s_{i} s_{i+1} s_{i}$ as a factor and no other repetitions.
- $c_{\mathbf{T}}\left(X_{w} \mathbf{B}\right)=1$ and singular $\Longleftrightarrow w$ contains the pattern 3412 exactly once and avoids the pattern 321.

Theorem (Lee, Masuda, Park-2021)

- $c_{\mathbf{T}}\left(X_{w} \mathbf{B}\right)=1$ and smooth $\Longleftrightarrow w$ contains the pattern 321 exactly once and avoids $3412 \Longleftrightarrow$ there exists a reduced word of w containing $s_{i} s_{i+1} s_{i}$ as a factor and no other repetitions.
- $c_{\mathbf{T}}\left(X_{w} \mathbf{B}\right)=1$ and singular $\Longleftrightarrow w$ contains the pattern 3412 exactly once and avoids the pattern 321.

Corollary (Can-D.)

If $X_{w \mathbf{B}}$ is a partition Schubert variety of \mathbf{T}-complexity 1 , then $X_{w \mathbf{B}}$ is nearly toric variety. In particular, the cardinality of this family is $2^{n-3}(n-2)$ for $n \geq 4$.

Theorem (Can-D.)

Let $X_{w \mathbf{B}}$ be a singular Schubert variety of \mathbf{T}-complexity 1. Then $X_{w} \mathbf{B}$ is nearly toric variety. Furthermore, let b_{n} be the cardinality of this family. Then the generating series of b_{n} is given by $A 001871$ in the OEIS.

Shortcoming and upcoming work.

(i) If $w=25314$, we found out that $c_{\mathbf{T}}\left(X_{w \mathbf{B}}\right)=1$ is smooth, yet $c_{\mathbf{B}_{\mathrm{L}}}\left(X_{w \mathbf{B}}\right) \neq 0$. By using SAGEMATH, we discovered that

n	1	2	3	4	5	6	7	8	9
r_{n}	0	0	1	6	24	84	275	864	2639

According to OEIS, this sequence is given by $r_{n+2}=n \cdot \mathscr{F}_{2 n}$ where \mathscr{F}_{m} is the m-th Fibonacci number.
(ii) By inspection, the cardinality of $\left\{w \in \mathfrak{S}_{n}^{312}: c_{\mathbf{B}_{\mathbf{L}}}\left(X_{w} \mathbf{B}\right)=0\right\}$ grows as

n	1	2	3	4	5	6	7	8	9
t_{n}	1	2	5	14	39	107	291	789	2138

We are still figuring out the generating series $\sum_{n \geq 3} r_{n} x^{n}, \quad \sum_{n \geq 1} t_{n} x^{n} \ldots$

Counting spherical Dyck paths

Theorem (Bankston-D)

The number of spherical Dyck paths \mathscr{S}_{n} is given by

$$
\left|\mathscr{S}_{n}\right|=\left\{\begin{array}{ll}
1 & n=1 \\
\sum_{k=2}^{n-1}\left|\mathscr{S}_{n-k}\right| \pi_{k}^{(1)}+\pi_{n}^{(1)}+\left|\mathscr{S}_{n-1}\right| & n \geq 2
\end{array} .\right.
$$

where

$$
\pi_{n}^{(1)}= \begin{cases}1 & 1 \leq n \leq 2 \\ 3 \cdot 2^{n-3}-1 & n \geq 3\end{cases}
$$

Surprisingly, $\pi_{n}^{(1)}$ counts the independence number of n-Mylcielski graph based on A266550-OIES.

Thank You/Gracias/Obrigado :)

https://arxiv.org/abs/2212.01234

"Stones on the road? I save every single one, and one day l'll build a castle." Fernando Pessoa.

