nearly toric Schubert varieties and Dyck paths

> Néstor F. Díaz Morera (joint with Mahir B. Can)

XIII-SE Lie Theory Workshop NC State University, Raleigh, USA May 12, 2023

• A Dyck word of a Dyck path π is word consisting of N(1,0) and E(0,1) letters.

- A Dyck word of a Dyck path π is word consisting of N(1,0) and E(0,1) letters.
- a Dyck path π is an elbow if its word is NN...NE...E, and it is a ledge if its Dyck word is $\pi = \underbrace{NN...N}_{n-1} \underbrace{E...ENE...EE}_{n}$. A Dyck word π'

is a E_+ extension of π if $\pi' = E\pi$.

- A Dyck word of a Dyck path π is word consisting of N(1,0) and E(0,1) letters.
- a Dyck path π is an elbow if its word is NN...NE...E, and it is a ledge if its Dyck word is $\pi = \underbrace{NN...N}_{n-1} \underbrace{E...ENE...EE}_{n}$. A Dyck word π'

is a E_+ extension of π if $\pi' = E\pi$.

• A portion τ of $\pi^{(r)}$ is said to be a connected component if τ starts and ends at the *r*-th diagonal y - x - r = 0, and these are the only lattice points it touches, for $0 \le r \le n - 1$.

- A Dyck word of a Dyck path π is word consisting of N(1,0) and E(0,1) letters.
- a Dyck path π is an elbow if its word is NN...NE...E, and it is a ledge if its Dyck word is $\pi = \underbrace{NN...N}_{n-1} \underbrace{E...ENE...EE}_{n}$. A Dyck word π'

is a E_+ extension of π if $\pi' = E\pi$.

• A portion τ of $\pi^{(r)}$ is said to be a connected component if τ starts and ends at the r-th diagonal y - x - r = 0, and these are the only lattice points it touches, for $0 \le r \le n - 1$.

A Dyck path π is said to be spherical if every connected component of $\pi^{(0)}$ is either an elbow or a ledge, or every connected component of $\pi^{(1)}$ is an elbow, or a ledge whose E₊ extension is the initial step of a connected component of $\pi^{(0)}$.

Spherical Dyck paths

The **T**-complexity of **Y**, denoted by $c_{T}(\mathbf{Y})$, is the codimension of the maximal torus **T** in **Y**. If the **T**-complexity of **T** is 1, we call **Y** a nearly toric variety.

The **T**-complexity of **Y**, denoted by $c_{T}(\mathbf{Y})$, is the codimension of the maximal torus **T** in **Y**. If the **T**-complexity of **T** is 1, we call **Y** a nearly toric variety.

Theorem (Brion, Vinberg-1986)

Y is spherical if the codimension of a general **B**-orbit is zero. The codimension $c_{\mathbf{B}}(\mathbf{Y})$ is called the complexity.

The **T**-complexity of **Y**, denoted by $c_{T}(\mathbf{Y})$, is the codimension of the maximal torus **T** in **Y**. If the **T**-complexity of **T** is 1, we call **Y** a nearly toric variety.

Theorem (Brion, Vinberg-1986)

 ${f Y}$ is spherical if the codimension of a general ${f B}$ -orbit is zero. The codimension $c_{f B}({f Y})$ is called the complexity .

Ubiquitous examples:

- Toric varieties.
- Wonderful varieties.
- Reductive monoids.

Schubert varieties

The Ehresmann-Bruhat-Chevalley decomposition

$$\operatorname{GL}_n = \bigsqcup_{w \in \mathfrak{S}_n} \mathbf{B} \ w \ \mathbf{B}, \quad \mathfrak{S}_n \cong \mathbf{N}_{\operatorname{GL}_n}(\mathbf{T}) / \ \mathbf{T} \rightsquigarrow \operatorname{GL}_n(\mathbb{C}) / \ \mathbf{B} = \bigsqcup_{w \in \mathfrak{S}_n} \mathbf{B} \ w \ \mathbf{B} / \ \mathbf{B}$$

Schubert varieties

The Ehresmann-Bruhat-Chevalley decomposition

$$\operatorname{GL}_n = \bigsqcup_{w \in \mathfrak{S}_n} \mathbf{B} \text{ } w \text{ } \mathbf{B}, \quad \mathfrak{S}_n \cong \mathbf{N}_{\operatorname{GL}_n}(\mathbf{T}) / \mathbf{T} \rightsquigarrow \operatorname{GL}_n(\mathbb{C}) / \mathbf{B} = \bigsqcup_{w \in \mathfrak{S}_n} \mathbf{B} \text{ } w \text{ } \mathbf{B} / \mathbf{B}$$

The Schubert variety X_{wB} associated with w is the **B**-orbit closure

$$X_{w \mathbf{B}} := \overline{\mathbf{B} w \mathbf{B} / \mathbf{B}}.$$

• $X_{w \mathbf{B}}$ is normal.

• The irreducible representations of GL_n can be constructed via line bundles on GL_n / B .

Combinatorial gadget I

The $X_{v B} \subseteq X_{w B}$ induces a partial order on the **Weyl group**.

The Bruhat–Chevalley order on \mathfrak{S}_n is defined by

$$v \leq w \iff X_{v \mathbf{B}} \subseteq X_{w \mathbf{B}}, \qquad \ell(w) = \dim X_{w \mathbf{B}}.$$

Combinatorial gadget I

The $X_{v \mathbf{B}} \subseteq X_{w \mathbf{B}}$ induces a partial order on the **Weyl group**.

The Bruhat–Chevalley order on \mathfrak{S}_n is defined by

$$v \leq w \iff X_{v \mathbf{B}} \subseteq X_{w \mathbf{B}}, \qquad \ell(w) = \dim X_{w \mathbf{B}}.$$

If $w = s_{i_1} \cdots s_{i_\ell}$ and ℓ is minimal among all such expressions, then $\ell := \ell(w)$ is said to be the length of w, and the expression $s_{i_1} \cdots s_{i_\ell}$ is called a reduced decomposition for w

Combinatorial gadget I

The $X_{v \mathbf{B}} \subseteq X_{w \mathbf{B}}$ induces a partial order on the **Weyl group**.

The Bruhat–Chevalley order on \mathfrak{S}_n is defined by

$$v \leq w \iff X_{v \mathbf{B}} \subseteq X_{w \mathbf{B}}, \qquad \ell(w) = \dim X_{w \mathbf{B}}.$$

If $w = s_{i_1} \cdots s_{i_\ell}$ and ℓ is minimal among all such expressions, then $\ell := \ell(w)$ is said to be the length of w, and the expression $s_{i_1} \cdots s_{i_\ell}$ is called a reduced decomposition for w

•
$$\operatorname{Red}(321) = \{s_1s_2s_1, s_2s_1s_2\}$$

 $v \le w \iff$ a reduced decomposition of v is substring (subword) of some reduced decomposition for v.

• $1432 \le 3412$ as $s_2 s_3 s_2$ is a subword of $s_2 s_1 s_3 s_2$.

Explanatory example

Combinatorial gadget II

For $w \in \mathfrak{S}_n$ and $p \in \mathfrak{S}_k$ with $k \leq n$. The permutation w contains the pattern p if there exits a sequence $1 \leq i_1 < \cdots < i_k \leq n$ such that $w(i_1) \cdots w(i_k)$ is in the same relative order as $p(1) \cdots p(k)$. If w does not contain p, then w is said to p-avoiding.

Combinatorial gadget II

For $w \in \mathfrak{S}_n$ and $p \in \mathfrak{S}_k$ with $k \leq n$. The permutation w contains the pattern p if there exits a sequence $1 \leq i_1 < \cdots < i_k \leq n$ such that $w(i_1) \cdots w(i_k)$ is in the same relative order as $p(1) \cdots p(k)$. If w does not contain p, then w is said to p-avoiding.

We call $X_{w B}$ a partition Schubert variety (Ding's variety) if w is a 312-avoiding permutation.

- Let \mathfrak{S}_n^{312} denote this family.
 - w = 23187695410 is in \mathfrak{S}_{10}^{312} .

Combinatorial gadget II

For $w \in \mathfrak{S}_n$ and $p \in \mathfrak{S}_k$ with $k \leq n$. The permutation w contains the pattern p if there exits a sequence $1 \leq i_1 < \cdots < i_k \leq n$ such that $w(i_1) \cdots w(i_k)$ is in the same relative order as $p(1) \cdots p(k)$. If w does not contain p, then w is said to p-avoiding.

We call $X_{w B}$ a partition Schubert variety (Ding's variety) if w is a 312-avoiding permutation.

- Let \mathfrak{S}_n^{312} denote this family.
 - w = 23187695410 is in \mathfrak{S}_{10}^{312} .

Theorem (Lakshmibai, Sandhya-1990)

The variety $X_{w B}$ is smooth $\iff w$ avoids the patterns 3412 and 4231.

•
$$\mathfrak{S}_n^{312}$$
 is smooth.

Explanatory example

Combinatorial gadget: III

Let $\mathfrak{S}_{\mathbf{I}}$ be the parabolic subgroup of \mathfrak{S}_n generated by $\mathbf{I} \subseteq S$ and $w_0(\mathbf{I})$ its longest element.

- Denote J(w) := {s ∈ S : ℓ(sw) < ℓ(w)} the left descent set of w
 w = 23187695410 → J(w) = {s₂, s₄, s₅, s₆, s₇}.
- A standard Coxeter element c in 𝔅_I is any product of the elements of I listed in some order.

•
$$\mathfrak{S}_{\mathsf{J}(w)} = \langle \mathsf{J}(w) \rangle \rightsquigarrow w_0(\mathsf{J}(w)) = s_1 s_4 s_5 s_4 s_6 s_5 s_4 s_7 s_6 s_5 s_4.$$

Combinatorial gadget: III

Let $\mathfrak{S}_{\mathbf{I}}$ be the parabolic subgroup of \mathfrak{S}_n generated by $\mathbf{I} \subseteq S$ and $w_0(\mathbf{I})$ its longest element.

- Denote J(w) := {s ∈ S : ℓ(sw) < ℓ(w)} the left descent set of w
 w = 23187695410 → J(w) = {s₂, s₄, s₅, s₆, s₇}.
- A standard Coxeter element c in 𝔅_I is any product of the elements of I listed in some order.

•
$$\mathfrak{S}_{\mathsf{J}(w)} = \langle \mathsf{J}(w) \rangle \rightsquigarrow w_0(\mathsf{J}(w)) = s_1 s_4 s_5 s_4 s_6 s_5 s_4 s_7 s_6 s_5 s_4.$$

Let **L** denote the standard Levi factor of the parabolic subgroup of X_{wB} in GL_n. Let **B**_L be Borel subgroup of **L** containing **T**. The Schubert variety X_{wB} is spherical if **B**_L has only finitely many orbits in X_{wB} . In fact, **L**_I is given by J(w).

Classification

For which $w \in \mathfrak{S}_n$, $c_{\mathbf{B}_{\mathsf{L}}}(X_{w \mathbf{B}}) = 0$?

Classification

For which
$$w \in \mathfrak{S}_n$$
, $c_{\mathsf{B}_{\mathsf{L}}}(X_{w\,\mathsf{B}}) = 0$?

Theorem (Gao, Hodges, Yong-2022) $c_{B_I}(X_{wB}) = 0 \iff w_0(J(w))w$ is a standard Coxeter element (Boolean).

• $w = 23187695410 \rightsquigarrow w_0(J(w))w = s_2s_8s_7$.

Classification

For which
$$w \in \mathfrak{S}_n$$
, $c_{\mathsf{B}_{\mathsf{L}}}(X_{w\,\mathsf{B}}) = 0$?

Theorem (Gao, Hodges, Yong-2022) $c_{\mathbf{B}_L}(X_{w \mathbf{B}}) = 0 \iff w_0(J(w))w$ is a standard Coxeter element (Boolean).

•
$$w = 23187695410 \rightsquigarrow w_0(J(w))w = s_2s_8s_7$$
.

Theorem (Gaetz-2022)

 $c_{\mathbf{B}_{I}}(X_{w \mathbf{B}}) = 0 \iff w$ avoids the following 21 patterns

1	24531	25314	25341	34512	34521	35412	35421
$\mathscr{P} := \langle$	42531	45123	45213	45231	45312	52314	52341
	53124	53142	53412	53421	54123	54213	35421 52341 54231

New characterization:

Theorem (Can-D.)

Let w be in \mathfrak{S}_n^{312} . Let π denote the Dyck path of size n corresponding to w. Then X_{wB} is a spherical Schubert variety if and only if π is spherical.

New characterization:

Theorem (Can-D.)

Let w be in \mathfrak{S}_n^{312} . Let π denote the Dyck path of size n corresponding to w. Then X_{wB} is a spherical Schubert variety if and only if π is spherical.

$$w s_7 s_8 = 23187654910 := w^1$$

$$w^1 s_4 s_5 s_6 s_7 = 23176548910 := w^2$$

$$w^2 s_4 s_5 s_6 = 23165478910 := w^3$$

$$w^3 s_4 s_5 = 23154678910 := w^4$$

$$w^4 s_4 = 23145678910 := w^5$$

$$w^5 s_2 = 21345678910 := w^6$$

$$w^6 s_1 = 12345678910 := id$$

$$w s_7 s_8 = 23187654910 := w^1$$

$$w^1 s_4 s_5 s_6 s_7 = 23176548910 := w^2$$

$$w^2 s_4 s_5 s_6 = 23165478910 := w^3$$

$$w^3 s_4 s_5 = 23154678910 := w^4$$

$$w^4 s_4 = 23145678910 := w^5$$

$$w^5 s_2 = 21345678910 := w^6$$

$$w^6 s_1 = 12345678910 := id$$

 $\underbrace{\frac{(s_7 s_8 | s_4 s_5 s_6 s_7 | s_4 s_5 s_6 | s_4 s_5 | s_4 | s_2 | s_1)^{-1}}_{\text{Red}(w)}}_{\text{Red}(w)}$

$$w s_7 s_8 = 23187654910 := w^1$$

$$w^1 s_4 s_5 s_6 s_7 = 23176548910 := w^2$$

$$w^2 s_4 s_5 s_6 = 23165478910 := w^3$$

$$w^3 s_4 s_5 = 23154678910 := w^4$$

$$w^4 s_4 = 23145678910 := w^5$$

$$w^5 s_2 = 21345678910 := w^6$$

$$w^6 s_1 = 12345678910 := id$$

$$\underbrace{\left(\frac{s_{7}s_{8}|s_{4}s_{5}s_{6}s_{7}|s_{4}s_{5}s_{6}|s_{4}s_{5}|s_{4}|s_{2}|s_{1}\right)^{-1}}_{\text{Red}(w)}$$

$$w_{s_{7}s_{8}} = 23187654910 := w^{1}$$

$$w^{1}s_{4}s_{5}s_{6}s_{7} = 23176548910 := w^{2}$$

$$w^{2}s_{4}s_{5}s_{6} = 23165478910 := w^{3}$$

$$w^{3}s_{4}s_{5} = 23154678910 := w^{4}$$

$$w^{4}s_{4} = 23145678910 := w^{5}$$

$$w^{5}s_{2} = 21345678910 := w^{6}$$

$$w^{6}s_{1} = 12345678910 := id$$

$$\underbrace{(s_{7}s_{8}|s_{4}s_{5}s_{6}s_{7}|s_{4}s_{5}s_{6}|s_{4}s_{5}|s_{4}|s_{2}|s_{1})^{-1}}_{\text{Red}(w)}$$

$$\mathfrak{S}_{n}^{312} \xrightarrow{\psi} \mathscr{L}_{n,n}^{+}; \ \ell(w) \longmapsto \operatorname{area}(\psi(w)) := \pi$$

14 / 18

S8

5

4 10

Theorem (Lee, Masuda, Park-2021)

- $c_{T}(X_{w B}) = 1$ and smooth $\iff w$ contains the pattern 321 exactly once and avoids 3412 \iff there exists a reduced word of w containing $s_i s_{i+1} s_i$ as a factor and no other repetitions.
- $c_{\mathbf{T}}(X_{w \mathbf{B}}) = 1$ and singular \iff w contains the pattern 3412 exactly once and avoids the pattern 321.

Theorem (Lee, Masuda, Park-2021)

- $c_{T}(X_{w B}) = 1$ and smooth $\iff w$ contains the pattern 321 exactly once and avoids 3412 \iff there exists a reduced word of w containing $s_i s_{i+1} s_i$ as a factor and no other repetitions.
- $c_{T}(X_{wB}) = 1$ and singular \iff w contains the pattern 3412 exactly once and avoids the pattern 321.

Corollary (Can-D.)

If X_{wB} is a partition Schubert variety of **T**-complexity 1, then X_{wB} is nearly toric variety. In particular, the cardinality of this family is $2^{n-3}(n-2)$ for $n \ge 4$.

Theorem (Can-D.)

Let $X_{w B}$ be a singular Schubert variety of **T**-complexity 1. Then $X_{w B}$ is nearly toric variety. Furthermore, let b_n be the cardinality of this family. Then the generating series of b_n is given by A001871 in the OEIS.

Shortcoming and upcoming work.

(i) If w = 25314, we found out that $c_{T}(X_{wB}) = 1$ is smooth, yet $c_{\mathbf{B}_{\mathbf{I}}}(X_{w,\mathbf{B}}) \neq 0$. By using SAGEMATH, we discovered that
 n
 1
 2
 3
 4
 5
 6
 7
 8
 9

 r_n
 0
 0
 1
 6
 24
 84
 275
 864
 2639
 According to OEIS, this sequence is given by $r_{n+2} = n \cdot \mathscr{F}_{2n}$ where \mathscr{F}_m is the *m*-th Fibonacci number. (ii) By inspection, the cardinality of $\{w \in \mathfrak{S}_n^{312} : c_{\mathbf{B}_i}(X_{w\mathbf{B}}) = 0\}$ grows as n 1 2 3 4 5 6 7 8 9 t_n 1 2 5 14 39 107 291 789 2138 We are still figuring out the generating series $\sum_{n\geq 3} r_n x^n$, $\sum_{n\geq 1} t_n x^n$...

Counting spherical Dyck paths

Theorem (Bankston-D)

The number of spherical Dyck paths \mathscr{S}_n is given by

$$|\mathscr{S}_{n}| = \begin{cases} 1 & n = 1\\ \sum_{k=2}^{n-1} |\mathscr{S}_{n-k}| \pi_{k}^{(1)} + \pi_{n}^{(1)} + |\mathscr{S}_{n-1}| & n \ge 2 \end{cases}$$

where

$$\pi_n^{(1)} = \begin{cases} 1 & 1 \le n \le 2\\ 3 \cdot 2^{n-3} - 1 & n \ge 3 \end{cases}$$

Surprisingly, $\pi_n^{(1)}$ counts the independence number of n-Mylcielski graph based on A266550-OIES.

Thank You/Gracias/Obrigado 😂

https://arxiv.org/abs/2212.01234

"Stones on the road? I save every single one, and one day I'll build a castle." Fernando Pessoa.