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Art

Figure: Drawn by my sister.
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The Gigantic Picture

Top. Spaces

Smooth manifolds

Complex manifolds
Alg.

Varieties

“The introduction of the cipher 0 or the group concept was general
nonsense too, and mathematics was more or less stagnating for

thousands of years because nobody was around to take such childish
steps...” A. Grothendieck
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Introduction

A priori, we are interested in geometric properties of the set of zeroes

V(f1, ...fr ) := {(t1, ..., tn) ∈ kn : fi(t1, ..., tn) = 0 ∀i} ⊂ kn . (1)

for some polynomials f1, ..., fr ∈ k[T1, ...,Tn].

In other words, there is a
triple  k︸︷︷︸

field

,

unknowns︷︸︸︷
T , F︸︷︷︸

polynomials


so that these objects interplay as in (1)

e.g. If f = T2
2 + T2

1 − 1 ∈ k[T1,T2], we see

V(f )
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Algebraic Sets

Let M ⊂ k[T1, ...,Tn] = k[T ] be a subset. The set of common zeroes of
the polynomials in M is denoted by

V(M) := {(t ∈ kn : f (t) = 0 ∀f ∈ M}.

Since k is a field, ∃ finitely many elements f1, ..., fr ∈ M for every subset
M ⊂ k[T ] such that V(M) = V(f1, ..., fr ).

The sets V(a), where a runs through the set of ideals of k[T ], are the
closed sets of a topology on kn, called the Zariski topology.

kn will be denoted by An
k the affine space of dimension n over k.

Closed subsets of An
k are called affine algebraic sets.

e.g. What are the alg. sets fo A2
k?

itself.

One point {x} = V(ax ).

V(f ), f is irreducible poly.
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Algebraic Sets

What if we pick any set W from An
k, is there any gadget from k[T ]

such that V(gadget) = W?

Let W ⊂ An be any subset.

I(W ) := {f ∈ k[T ] : f (x) = 0 ∀x ∈ X}.

Theorem (Hilbert’s Nullstellensatz)

For any affine alg. set W ⊂ An
k, we have V(I(W )) = W.

For any ideal a ⊂ k[T ] we have I(V(a)) =
√
a.

The radical of a ⊂ k[T ] is
√
a := {f ∈ k[T ] : ∃r ∈ Z≥0 f r ∈ a}.

In other words, there is inclusion-reversing bijection

{affine alg. sets in An
k}

1:1
←→ {radicals ideals in k[T ]}

W 7→ I(W )
V(a) ← [ a
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Topological Properties

A topological space X , ∅ is called irreducible whether X can’t be
expressed as the union of two proper closed subsets.

A topological space X is called Noetherian if every descending chain

X ⊇ Z1 ⊇ Z2 ⊇ · · ·

of closed subsets of X becomes stationary.

Let X ⊂ An
k be any subset. Then X is Noetherian.

Any alg. set W is irreducible if and only if A (W ) is an integral domain.
The coordinate ring is defined by

A (W ) := k[T ]/ I(W )
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Topological Properties

e.g. Let W = V(T2 − T2
1 ) ⊂ A2

C
be affine alg. set.

We parse

A (W ) = C[T1,T2]/ I(W ) � C[T1,T2]/(T2 − T2
1 ) � C[T1].

Can we talk about dimension of W?
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Morphisms

Given two alg. sets X ⊂ Am
k and Z ⊂ An

k. A morphism X → Z is map
f : X → Z of the underlying sets such that there exist poly.
f1, ..., fn ∈ k[T1, ...,Tm] with f (x) = (f1(x), ...., fn(x)) for all x ∈ X .

Morphism of affine alg. sets are continuous.
Composition of morphism is again a morphism of alg. sets.

e.g.
A1 → V(T1 − T2

2 ); x 7→ (x2, x) is a morphism. Moreover, its inverse
(x, y) 7→ y is a morphism.
A1 → V(T2

2 − (T2
1 (T1 + 1)); x 7→ (x2 − 1, x(x2 − 1)) is a morphism. It is

bijective, yet not iso.
exp : A1

C → A
1
C is not a morphism of alg. sets.
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Morphisms

The set Hom(X ,A1
k) carries the structure of a k-algebra with addition

and multiplication

(f + g)(x) = f (x) + g(x), (fg)(x) = f (x)g(x).

k[T ]→ Hom(X ,A1
k) is surjective homo of k-algebras with kernel I(X ).

Given an alg. set X , the k-alg.

Γ(X ) := k[T1, ...,Tn]/ I(X ) � Hom(X ,A1
k).

V(a) = {x ∈ X f (x) = 0 ∀f ∈ a} = V(π−1(a)) ∩ X , a ⊂ Γ(X ).
For f ∈ Γ(X ), we set D(f ) := {x ∈ X : f (x) , 0} = X \ V(f ).

The principal open sets D(f ) form a basis of the Zariski topology.
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Shortcomings

In short,


Affine algebraic

sets X over
field k

 ⇐⇒


Commutative rings:
Algebra over k

Finitely generated
No nilpotents



k[T1] behaves pretty similar to Z or Z[i]...

k[T1] ⊂ k (T1) and k[T1](T1) = p
q though...

There is not distinction between V(T1) ∩ V(T2) ⊂ A2
k and

V(T2) ∩ V(T2
1 − T1) ⊂ A2

k although...

Thus (dream),

Affine Schemes ⇐⇒ Commutative rings
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Shortcomings

Thank You/Gracias!
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