A naive introduction to Affine Schemes

Néstor F. Díaz Morera

Tulane University, Graduate Colloquium

March 11, 2022

Díaz Morera (TU, Colloquium)

Outline

Art

- 2 The Gigantic Picture
- Introduction
 - Algebraic Sets
- 5 Topological Properties
- 6 Morphisms
 - Shortcomings

Beferences

Figure: Drawn by my sister.

"The introduction of the cipher 0 or the group concept was general nonsense too, and mathematics was more or less stagnating for thousands of years because nobody was around to take such childish steps..." A. Grothendieck • A priori, we are interested in geometric properties of the set of zeroes

$$\mathbf{V}(f_1,...,f_r) := \{(t_1,...,t_n) \in \mathbf{k}^n : f_i(t_1,...,t_n) = 0 \quad \forall i\} \subset \mathbf{k}^n .$$
(1)

for some polynomials $f_1, ..., f_r \in \mathbf{k}[T_1, ..., T_n]$.

A priori, we are interested in geometric properties of the set of zeroes

$$\mathbf{V}(f_1, ..., f_r) := \{ (t_1, ..., t_n) \in \mathbf{k}^n : f_i(t_1, ..., t_n) = 0 \quad \forall i \} \subset \mathbf{k}^n .$$
(1)

for some polynomials $f_1, ..., f_r \in \mathbf{k}[T_1, ..., T_n]$. In other words, there is a triple

so that these objects interplay as in (1)

e. **g**. If $f = T_2^2 + T_1^2 - 1 \in \mathbf{k}[T_1, T_2]$, we see

$$\mathbf{V}(M) := \{ (t \in \mathbf{k}^n : f(t) = 0 \quad \forall f \in M \}.$$

• Since **k** is a field, \exists finitely many elements $f_1, ..., f_r \in M$ for every subset $M \subset \mathbf{k}[\underline{T}]$ such that $\mathbf{V}(M) = \mathbf{V}(f_1, ..., f_r)$.

$$\mathbf{V}(M) := \{ (t \in \mathbf{k}^n : f(t) = 0 \quad \forall f \in M \}.$$

- Since **k** is a field, \exists finitely many elements $f_1, ..., f_r \in M$ for every subset $M \subset \mathbf{k}[\underline{T}]$ such that $\mathbf{V}(M) = \mathbf{V}(f_1, ..., f_r)$.
- The sets V(α), where α runs through the set of ideals of k[<u>T</u>], are the closed sets of a topology on kⁿ, called the Zariski topology.

$$\mathbf{V}(M) := \{ (t \in \mathbf{k}^n : f(t) = 0 \quad \forall f \in M \}.$$

- Since **k** is a field, \exists finitely many elements $f_1, ..., f_r \in M$ for every subset $M \subset \mathbf{k}[\underline{T}]$ such that $\mathbf{V}(M) = \mathbf{V}(f_1, ..., f_r)$.
- The sets V(α), where α runs through the set of ideals of k[<u>T</u>], are the closed sets of a topology on kⁿ, called the Zariski topology.
 - \mathbf{k}^n will be denoted by $\mathbb{A}^n_{\mathbf{k}}$ the affine space of dimension *n* over **k**.
 - Closed subsets of $\mathbb{A}^n_{\mathbf{k}}$ are called affine algebraic sets.

$$\mathbf{V}(M) := \{ (t \in \mathbf{k}^n : f(t) = 0 \quad \forall f \in M \}.$$

- Since **k** is a field, \exists finitely many elements $f_1, ..., f_r \in M$ for every subset $M \subset \mathbf{k}[\underline{T}]$ such that $\mathbf{V}(M) = \mathbf{V}(f_1, ..., f_r)$.
- The sets V(α), where α runs through the set of ideals of k[<u>T</u>], are the closed sets of a topology on kⁿ, called the Zariski topology.
 - \mathbf{k}^n will be denoted by $\mathbb{A}^n_{\mathbf{k}}$ the affine space of dimension *n* over **k**.
 - Closed subsets of $\mathbb{A}^n_{\mathbf{k}}$ are called affine algebraic sets.
- **e**. **g**. What are the alg. sets fo $\mathbb{A}^2_{\mathbf{k}}$?

$$\mathbf{V}(M) := \{ (t \in \mathbf{k}^n : f(t) = 0 \quad \forall f \in M \}.$$

- Since **k** is a field, \exists finitely many elements $f_1, ..., f_r \in M$ for every subset $M \subset \mathbf{k}[\underline{T}]$ such that $\mathbf{V}(M) = \mathbf{V}(f_1, ..., f_r)$.
- The sets V(α), where α runs through the set of ideals of k[<u>T</u>], are the closed sets of a topology on kⁿ, called the Zariski topology.
 - \mathbf{k}^n will be denoted by $\mathbb{A}^n_{\mathbf{k}}$ the affine space of dimension *n* over **k**.
 - Closed subsets of $\mathbb{A}^n_{\mathbf{k}}$ are called affine algebraic sets.
- **e**. **g**. What are the alg. sets fo $\mathbb{A}^2_{\mathbf{k}}$?
 - itself.
 - One point $\{x\} = \mathbf{V}(\mathfrak{a}_x)$.
 - **V**(*f*), f is irreducible poly.

What if we pick any set W from Aⁿ_k, is there any gadget from k[T] such that V(gadget) = W?

- What if we pick any set W from Aⁿ_k, is there any gadget from k[T] such that V(gadget) = W?
- Let $W \subset \mathbb{A}_n$ be any subset.

$$\mathbf{I}(W) := \{ f \in \mathbf{k}[\underline{T}] : f(x) = 0 \quad \forall x \in X \}.$$

Theorem (Hilbert's Nullstellensatz)

• For any affine alg. set $W \subset \mathbb{A}^n_{\mathbf{k}}$, we have $\mathbf{V}(\mathbf{I}(W)) = W$.

• For any ideal $\mathfrak{a} \subset \mathbf{k}[\underline{T}]$ we have $\mathbf{l}(\mathbf{V}(\mathfrak{a})) = \sqrt{\mathfrak{a}}$.

• The radical of $a \subset \mathbf{k}[\underline{T}]$ is $\sqrt{a} := \{f \in \mathbf{k}[\underline{T}] : \exists r \in \mathbb{Z}_{\geq 0} \mid f^r \in a\}.$

In other words, there is inclusion-reversing bijection

- What if we pick any set W from Aⁿ_k, is there any gadget from k[T] such that V(gadget) = W?
- Let $W \subset \mathbb{A}_n$ be any subset.

$$\mathbf{I}(W) := \{ f \in \mathbf{k}[\underline{T}] : f(x) = 0 \quad \forall x \in X \}.$$

Theorem (Hilbert's Nullstellensatz)

• For any affine alg. set $W \subset \mathbb{A}^n_{\mathbf{k}}$, we have $\mathbf{V}(\mathbf{I}(W)) = W$.

• For any ideal $\mathfrak{a} \subset \mathbf{k}[\underline{T}]$ we have $\mathbf{l}(\mathbf{V}(\mathfrak{a})) = \sqrt{\mathfrak{a}}$.

• The radical of $\mathfrak{a} \subset \mathbf{k}[\underline{T}]$ is $\sqrt{\mathfrak{a}} := \{f \in \mathbf{k}[\underline{T}] : \exists r \in \mathbb{Z}_{\geq 0} \mid f^r \in \mathfrak{a}\}.$

In other words, there is inclusion-reversing bijection

$$\{ \text{affine alg. sets in } \mathbb{A}^n_{\mathbf{k}} \} \xrightarrow{1:1} \{ \text{radicals ideals in } \mathbf{k}[\underline{\mathcal{T}}] \}$$

$$\begin{array}{c} W & \mapsto & \mathbf{l}(W) \\ \mathbf{V}(\mathfrak{a}) & \leftarrow & \mathfrak{a} \end{array}$$

- A topological space X ≠ Ø is called irreducible whether X can't be expressed as the union of two proper closed subsets.
- A topological space X is called Noetherian if every descending chain

$$X\supseteq Z_1\supseteq Z_2\supseteq\cdots$$

of closed subsets of X becomes stationary.

- Let $X \subset \mathbb{A}^n_k$ be any subset. Then X is Noetherian.
- Any alg. set W is irreducible if and only if A(W) is an integral domain.
 - The coordinate ring is defined by

$$A(W) := \mathbf{k}[\underline{T}] / \mathbf{I}(W)$$

$$A(W) = \mathbb{C}[T_1, T_2] / \mathbf{I}(W) \cong \mathbb{C}[T_1, T_2] / (T_2 - T_1^2) \cong \mathbb{C}[T_1].$$

• Can we talk about dimension of W?

• Given two alg. sets $X \subset \mathbb{A}_{k}^{m}$ and $Z \subset \mathbb{A}_{k}^{n}$. A morphism $X \to Z$ is map $f : X \to Z$ of the underlying sets such that there exist poly. $f_{1}, ..., f_{n} \in \mathbf{k}[T_{1}, ..., T_{m}]$ with $f(x) = (f_{1}(x), ..., f_{n}(x))$ for all $x \in X$.

- Given two alg. sets $X \subset \mathbb{A}_{\mathbf{k}}^{m}$ and $Z \subset \mathbb{A}_{\mathbf{k}}^{n}$. A morphism $X \to Z$ is map $f : X \to Z$ of the underlying sets such that there exist poly. $f_{1}, ..., f_{n} \in \mathbf{k}[T_{1}, ..., T_{m}]$ with $f(x) = (f_{1}(x), ..., f_{n}(x))$ for all $x \in X$.
 - Morphism of affine alg. sets are continuous.
 - Composition of morphism is again a morphism of alg. sets.
- e.g.
 - $\mathbb{A}^1 \to \mathbf{V}(T_1 T_2^2)$; $x \mapsto (x^2, x)$ is a morphism. Moreover, its inverse $(x, y) \mapsto y$ is a morphism.

- Given two alg. sets $X \subset \mathbb{A}_{\mathbf{k}}^{m}$ and $Z \subset \mathbb{A}_{\mathbf{k}}^{n}$. A morphism $X \to Z$ is map $f : X \to Z$ of the underlying sets such that there exist poly. $f_{1}, ..., f_{n} \in \mathbf{k}[T_{1}, ..., T_{m}]$ with $f(x) = (f_{1}(x), ..., f_{n}(x))$ for all $x \in X$.
 - Morphism of affine alg. sets are continuous.
 - Composition of morphism is again a morphism of alg. sets.

• e.g.

- $\mathbb{A}^1 \to \mathbf{V}(T_1 T_2^2)$; $x \mapsto (x^2, x)$ is a morphism. Moreover, its inverse $(x, y) \mapsto y$ is a morphism.
- $\mathbb{A}^1 \to \mathbf{V}(T_2^2 (T_1^2(T_1 + 1)); x \mapsto (x^2 1, x(x^2 1))$ is a morphism. It is bijective, yet not iso.

- Given two alg. sets $X \subset \mathbb{A}_{k}^{m}$ and $Z \subset \mathbb{A}_{k}^{n}$. A morphism $X \to Z$ is map $f : X \to Z$ of the underlying sets such that there exist poly. $f_{1}, ..., f_{n} \in \mathbf{k}[T_{1}, ..., T_{m}]$ with $f(x) = (f_{1}(x), ..., f_{n}(x))$ for all $x \in X$.
 - Morphism of affine alg. sets are continuous.
 - Composition of morphism is again a morphism of alg. sets.

• e.g.

- $\mathbb{A}^1 \to \mathbf{V}(T_1 T_2^2)$; $x \mapsto (x^2, x)$ is a morphism. Moreover, its inverse $(x, y) \mapsto y$ is a morphism.
- $\mathbb{A}^1 \to \mathbf{V}(T_2^2 (T_1^2(T_1 + 1)); x \mapsto (x^2 1, x(x^2 1))$ is a morphism. It is bijective, yet not iso.
- exp : $\mathbb{A}^1_{\mathbb{C}} \to \mathbb{A}^1_{\mathbb{C}}$ is not a morphism of alg. sets.

(f+g)(x) = f(x) + g(x), (fg)(x) = f(x)g(x).

$$(f+g)(x) = f(x) + g(x),$$
 $(fg)(x) = f(x)g(x).$

• $\mathbf{k}[\underline{T}] \to \operatorname{Hom}(X, \mathbb{A}^1_{\mathbf{k}})$ is surjective homo of \mathbf{k} -algebras with kernel $\mathbf{I}(X)$.

$$(f+g)(x) = f(x) + g(x),$$
 $(fg)(x) = f(x)g(x).$

k[<u>T</u>] → Hom(X, A¹_k) is surjective homo of k-algebras with kernel I(X).
Given an alg. set X, the k-alg.

$$\Gamma(X) := \mathbf{k}[T_1, ..., T_n] / \mathbf{l}(X) \cong \operatorname{Hom}(X, \mathbb{A}^1_{\mathbf{k}}).$$

$$(f+g)(x) = f(x) + g(x),$$
 $(fg)(x) = f(x)g(x).$

k[T] → Hom(X, A¹_k) is surjective homo of k-algebras with kernel I(X).
Given an alg. set X, the k-alg.

$$\Gamma(X) := \mathbf{k}[T_1, ..., T_n] / \mathbf{l}(X) \cong \operatorname{Hom}(X, \mathbb{A}^1_{\mathbf{k}}).$$

•
$$\mathbf{V}(\mathfrak{a}) = \{ x \in X \ f(x) = 0 \quad \forall f \in \mathfrak{a} \} = \mathbf{V}(\pi^{-1}(\mathfrak{a})) \cap X, \ \mathfrak{a} \subset \Gamma(X).$$

- For $f \in \Gamma(X)$, we set $D(f) := \{x \in X : f(x) \neq 0\} = X \setminus \mathbf{V}(f)$.
- The principal open sets *D*(*f*) form a basis of the Zariski topology.

In short,

 $\begin{cases} \text{Affine algebraic} \\ \text{sets } X \text{ over} \\ \text{field } \mathbf{k} \end{cases} \iff \begin{cases} \text{Commutative rings:} \\ \text{Algebra over } \mathbf{k} \\ \text{Finitely generated} \\ \text{No nilpotents} \end{cases}$

In short,

 $\begin{cases} \text{Affine algebraic} \\ \text{sets } X \text{ over} \\ \text{field } \mathbf{k} \end{cases} \iff \begin{cases} \text{Commutative rings:} \\ \text{Algebra over } \mathbf{k} \\ \text{Finitely generated} \\ \text{No nilpotents} \end{cases}$

- k[T₁] behaves pretty similar to Z or Z[i]...
- $\mathbf{k}[T_1] \subset k(T_1)$ and $\mathbf{k}[T_1]_{(T_1)} = \frac{p}{q}$ though...
- There is not distinction between $\mathbf{V}(T_1) \cap \mathbf{V}(T_2) \subset \mathbb{A}^2_{\mathbf{k}}$ and $\mathbf{V}(T_2) \cap \mathbf{V}(T_1^2 - T_1) \subset \mathbb{A}^2_{\mathbf{k}}$ although...

Thus (dream),

Affine Schemes \iff Commutative rings

Thank You/Gracias!

Main references I

📎 D Cox, J. Little, D. O'Shea, Ideals, Varieties, Algorithms

Yuri I. Manin

Introduction to the Theory of Schemes

💊 Meinolf Geck,

An Introduction to Algebraic Geometry and Algebraic Groups