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Potential Theory’s Reviews Subharmonic Function

Definition
Let (X , τ) be a topological space. We way a function u : X → [−∞,∞) is
upper semicontinuous (u.s.c) if the set {x ∈ X | u(x) < α} belongs to τ
for each α ∈ R. In other words, u−1([−∞, α)) is open in X .

Definition
Let U ⊂ C open. A function u : U → [−∞,∞) is called subharmonic if it
is upper semicontinuous and satisfies the local submean inequality, i.e.
given w ∈ U, there exists ρ > 0 such that

u(w) ≤ 1
2π

∫ 2π

0
u(w + reit)dt for r ∈ [0, ρ).

Example
If f is holomorphic on U ⊂ C open ⇒ log |f | is subharmonic on U.
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Potential Theory’s Reviews Subharmonic Function

Proposition
Let u, v be subharmonic function on an open U ⊂ C, then

(i) max(u, v) is subharmonic on U.
(ii) αu + βv is subharmonic on U for all α, β ≥ 0.

Theorem (Maximum Principle)

Let u be a subharmonic function on a domain G ⊂ C.
(i) If u attains a global maximum on G ⇒ u ≡ C for some constant C.
(ii) If limz→ζ u(z) ≤ 0 for all ζ ∈ ∂G ⇒ u ≤ 0 on G.
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Potential Theory’s Reviews Subharmonic Function

Criteria for Subharmonicity

Theorem
Let U be an open subset of C and let u : U → [−∞,∞) be an upper
semicontinuous function. Then the following are equivalent.

(i) The function u is subharmonic on U.
(ii) Whenever ∆(w , ρ) ⊂ U, then for r < ρ and t ∈ [0, 2π)

u(w + reit) ≤ 1
2π

∫ 2π

0

ρ2 − r 2

ρ2 − 2ρr cos(θ − t) + r 2φ(w + ρeiθ)dθ.

(iii) (Harmonic Majoration) Whenever D is precompact subdomain of U
and h is harmonic function on D satisfying

lim
z→ζ

sup(u − h)(z) ≤ 0 for ζ ∈ ∂D,

then u ≤ h on D.
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Potential Theory’s Reviews Hyperbolic Metric

Definition
Let γ : I → D be a smooth curve. The length is to be

Lρ(γ) =
∫
γ

( 2
1− |z |2

)
|dz | =

∫ 1

0

( 2
1− |γ(t)|2

)
|γ′(t)|dt.

Definition

Let

λD(z) = 1
1− |z |2

be the density of the hyperbolic distance in D.

The hyperbolic distance
between two points z0 and z1 in D is given by

ρD(z0, z1) := inf
{∫

γ
λD(z)|dz |

}
.
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Fernando D́ıaz (IPN, México) Qp Space on Riemann Surfaces June 1, 2018 7 / 43



Potential Theory’s Reviews Green’s Function

Definition

Let G be a domain in the extended plane Ĉ and let a ∈ Ω. A Green’s
function of G with singularity at a is a function g : Ω \ {a} → R which
holds

(i) g(z , a) is harmonic in Ω \ {a}.
(ii) G(z) = g(z , a) + log |z − a| is harmonic is a disk about a.
(iii) limz→w g(z , a) = 0 for each w ∈ ∂Ω.

Proposition (Example)

Let ϕa : D→ D; ϕa(z) 7→ a−z
1−az , a ∈ D be a Möbius transformation,

then

g(z , a) = log 1
|ϕa(z)|

is the Green’s function for D with singularity at z = a.

Fernando D́ıaz (IPN, México) Qp Space on Riemann Surfaces June 1, 2018 8 / 43



Manifolds and Riemann surfaces Topological reviews

Definition
A topological surface M is a Hausdorff topological space provided with
collection {ϕi : Ui → ϕi (Ui )} of homeomorphisms (called charts) from
open subsets Ui ⊂ M (called coordinated neighbourhoods) to open subsets
ϕi (U) ⊂ C such that:

(i) M =
⋃

i∈I Ui .
(ii) Whenever Ui ∪ Uj 6= ∅, the transition functions

ϕj ◦ ϕ−1
i : ϕi (Ui ∩ Uj)→ ϕj(Ui ∩ Uj)

is a homeomorphism.
A collection of charts fulfilling these properties is called a (topological)
atlas, and the inverse ϕ−1

i is called a parametrization.
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Manifolds and Riemann surfaces Topological reviews

Figure: The transition function between two coordinates charts.
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Manifolds and Riemann surfaces Riemann surfaces

Definition
A Riemann surface R is a connected topological surface such the
transition functions of the atlas are holomorphic mappings between open
subsets of the complex plane C i.e, it is pair (R,Σ).

Example
Let M = C, and let U be any open subset. Define ϕU(x , y) = x + iy from
(considered as a subject of C) to the complex plane. This is a complex
chart on C. Moreover Let M be C itself, considered topologically as R2.
Therefore, it is a Riemann surface which is called complex plane.
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Manifolds and Riemann surfaces Classical Examples

Example
Let S2 = {(x , y , t) ∈ R3 | x2 + y2 + t2 = 1} be denoted the unit 2-sphere.
Put t = 0 plane as a copy of the complex plane C, with (x , y , 0) being
identified with z = x + iy . Let’s us considere the following two charts

U1 = S2 \ {(0, 0, 1)}, ϕ1(x , y , t) = x
1− t + i y

1− t
U2 = S2 \ {(0, 0,−1)}, ϕ2(x , y , t) = x

1 + t − i y
1 + t

Since x − iy
1 + t = 1− t

x + iy , it follows that the transition function is

ϕ2 ◦ ϕ−1
1 (z) = 1

z

which is holomorphic on a domain ϕ1(U1 ∩ U2) = C \ {0}.
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Manifolds and Riemann surfaces Classical Examples

N = (0, 0, 1)

S = (0, 0,−1)

S2

=(z)

<(z)

C

ϕ1

ϕ2

Figure: Compatible charts on S2.
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Manifolds and Riemann surfaces Morphism of Riemann surfaces

Definition
Let M be a Riemann surface and Y ⊂ M a open subset. A function
f : Y → C is called holomorphic, if for every chart ψ : U → V on M the
function

f ◦ ψ−1 : ψ(U ∩ Y )→ C

is holomorphic in the usual sense on the open set ψ(U ∩ Y ) ⊂ C.

Definition
Suppose M and N are Riemann surfaces. A continuous map F : M → N is
called holomorphic, if for every pair of charts ψ1 : U1 → V1 on M and
ψ2 : U2 → V2 on N with f (U1) ⊂ U2, the mapping

ψ2 ◦ F ◦ ψ−1
1 : V1 → V2

is holomorphic in the usual sense.
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Manifolds and Riemann surfaces Morphism of Riemann surfaces

M
N

F

ψ1
ψ2

U2

U1

C

Cψ−1
1 ◦ F ◦ ψ2

V1

V2

F−1

Figure: Morphism between Riemann surfaces.

Definition
A function F : M → N is said to be a biholormorphic if it is a bijective
and both F : M → N and F−1 : N → M are holomorphic.
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Manifolds and Riemann surfaces The uniformization Theorem [Poincaré-Koebe]

Are C Ĉ and D biholomorphic to each other?

S2

D

H

C

<(z)

=(z)
=(z) > 0

ψ µ

φ

ϕ

Figure: Likely biholomorphisms among S2, D and C.
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Manifolds and Riemann surfaces The uniformization Theorem [Poincaré-Koebe]

Theorem (Riemann Mapping Theorem)
Any non-empty simply connected domain Ω ⊂ C, which is not C, is
biholomorphic to the unit disc D.

They aren’t biholomorphic among them since:
� µ : C→ D neither by Liouville’s theorem.
� ψ : S2 → D and φ : S2 → C neither by compactness of S2.

However, H and D are biholomorphic via the following Möbius transforma-
tion

ϕ(z) = z − i
z + i
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Manifolds and Riemann surfaces The uniformization Theorem [Poincaré-Koebe]

Are there other Riemann surfaces beside C, D and Ĉ?

Theorem (The Uniformization Theorem (Poincaré, Koebe -1907) )
Every simply connected Riemann surface M is biholomorphic either to
• D (hyperbolic),
• C (parabolic),
• Ĉ (elliptic).
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Manifolds and Riemann surfaces Covering Theory

Definition
Let E and X be topological surfaces. A continuous mapping π : E → X is
a covering map if the following holds.

(i) Every point x ∈ X has a open neighborhood U such that its preimage
π−1(U) can be represented as

π−1(U) =
⊔
j∈J

Vj .

where the {Vj}j∈J are disjoint open subsets of E .
(ii) In particaular, π is a local homeomorphism.

Example
Let X = S1 and E = R be the circle and the real line respectively. Then
the mapping p(t) = e2πit is a covering.
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Manifolds and Riemann surfaces Covering Theory

Proposition
If X has a holomorphic structure, then E inherits a unique Riemann
surface structure such that π is holomorphic.

Definition
Let π : E → R be a covering map. It is called a universal covering of a
topological space E if E is simply connected.

Theorem
The universal covering for any Riemann surface R is either C, D or S2

Theorem
Every Riemann surface R is biholomorphic to a quotient S̃/Γ, where S̃ is
D,C, Ĉ and Γ is a group of automorphism of S̃ which acts freely and
properly discontinuously.
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Space of Holomorphic Functions The Bloch space B

Definition
A function f is called a Bloch function if it is holomorphic on D and

sup
z∈D

(1− |z |2)|f ′(z)| < +∞. (1)

We will denote B the family of all Bloch functions.
It’s called a little Bloch function if

lim
|z|→1

(1− |z |2)|f ′(z)| = 0. (2)

Proposition
� Every bounded function f : D→ C is a Bloch function.
� If f ∈ B, then for all z ∈ D

|f (z)| ≤ |f (0)|+ M|λ(|z |)|

where λ(z) = log(1− z) and M = supz∈D(1− |z |2)|f ′(z)|.
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Space of Holomorphic Functions The Bloch space B

Proposition
� The set B equipped with the norm

‖f ‖B = |f (0)|+ sup
z∈D

(1− |z |2)|f ′(z)|

is a Banach space.
� B is not separable.
� Let f ∈ B and ϕ : D→ D be a conformal mapping of D onto itself,

then h(z) = f (ϕ(z)) ∈ B.

Fernando D́ıaz (IPN, México) Qp Space on Riemann Surfaces June 1, 2018 22 / 43



Space of Holomorphic Functions The Dirichlet Space D

Definition
A Dirichlet space D is the collection of all holomorphic function on D such
that ∫∫

D
|f ′(z)|2dxdy <∞ where z = x + iy .

It can equipped with the following norm:

‖f ‖D =
(
|f (0)|2 +

∫∫
D
|f ′(z)|2dxdy

)1/2
.
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Space of Holomorphic Functions The Dirichlet Space D

Proposition
If f (z) =

∑∞
n=0 anzn is holomorphic on D, then

1
π

∫∫
D
|f ′(z)|2dxdy =

∞∑
n=1

n|an|2.

Observations
A briefly properties about D spaces are mentioned in the following.
� The D space is conformally equivalent.
� The D space is a Banach space with the norm ‖ · ‖D.

Fernando D́ıaz (IPN, México) Qp Space on Riemann Surfaces June 1, 2018 24 / 43



Space of Holomorphic Functions The Dirichlet Space D

Proposition
If f (z) =

∑∞
n=0 anzn is holomorphic on D, then

1
π

∫∫
D
|f ′(z)|2dxdy =

∞∑
n=1

n|an|2.

Observations
A briefly properties about D spaces are mentioned in the following.
� The D space is conformally equivalent.
� The D space is a Banach space with the norm ‖ · ‖D.
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Space of Holomorphic Functions Qp Spaces

Definition
For p > 0, let Qp denote the space of all holomorphic function satisfying

sup
α∈D

∫∫
D
|f ′(z)|2g(z , α)pdxdy <∞, (3)

where g(z , α) is the Green’s function with a logarithm singularity at α.

Definition
For p > 0, let Qp,0 denote the space of all holomorphic function satisfying

lim
|α|→1

∫∫
D
|f ′(z)|2g(z , α)pdxdy = 0, (4)

where g(z , α) is the Green’s function with a logarithm singularity at α.
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Space of Holomorphic Functions Qp Spaces

Observations
We will view a briefly glance about Qp and Qp,0. In fact, how they relate
with the previous spaces.
� For p = 0, it follows Qp = D.
� For p > 1, it follows Qp = B.
� For p > 1, Qp,0 = B0.

Theorem
Let f : D→ C be a holomorphic function, then the following conditions
are equivalent

(i) f ∈ B.
(ii) {f }Qp <∞ for all p > 1.
(iii) {f }Qp <∞ for some p > 1.

Theorem
For 0 < p < q <∞, it holds Qp ⊂ Qq.
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Hyperbolic Riemann Surface Potential Theory on R

Definition
Let R be a Riemann surface. A real-valued function h : R → R is
harmonic at p belonging to R if there exists a coordinate disk (∆, ϕ)
containing p such that h ◦ ϕ−1 : D→ R is harmonic function. If h is
harmonic at each p ∈ R, we say h is a harmonic function on R.

Definition
A continuous function u : R → [−∞,∞) is subharmonic if for every
coordinate disk (∆, ϕ) and h : ∆→ R is a harmonic function such that
u(p) ≤ h(p) for all p ∈ ∂∆, then u(p) ≤ h(p) for all p ∈ ∆.

Theorem (Maximum Principle)
Let u be a subharmonic function on a Riemann surface R. If u attains a
maximum at p ∈ R, then u is a constant function.
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Hyperbolic Riemann Surface Potential Theory on R

Observations
Let (∆, ϕ) be a coordinate disk and u be a subharmonic function on R.
By using the Poisson integral, we can solve the Dirichlet problem∂2w

∂x2 + ∂2w
∂y2 = 0 in D

w = u ◦ ϕ−1 on ∂D.

Let u∆ : R → R by

u∆(p) =
{

u(p) if p 6∈ ∆
(w ◦ ϕ)(p) if p ∈ ∆.

Then u∆ is continuous on R and harmonic on ∆.
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Hyperbolic Riemann Surface Perron’s Family

Definition
A Perron family on R is a collection F of subharmonic functions such
that

(i) If u1, u2 ∈ F , then max{u1, u2} ∈ F .
(ii) If u ∈ F , then u∆ ∈ F .

Theorem
Let F be a Perron family on R. Then u(p) = sup{v(p) | v ∈ F} is either
harmonic or u(p) = +∞ for all p ∈ R.
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Hyperbolic Riemann Surface Perron’s Family

Proposition
Fix a point q ∈ R and let (∆, ϕ) be a coordinate disk containing q such
that ϕ(q) = 0. Let P be a family of subharmonic functions on R \ {q}
such that

(i) Every u ∈ Pq has compact support.
(ii) Every u ∈ Pq is such that v(p) = u(p) + log |ϕ(p)| is subharmonic on

∆.
Then, Pq is a Perron family on R \ {q}.

Definition
Suppose sup{u(p) : u ∈ Pq} <∞ for some p ∈ R. A Green’s function
for R with singularity at q is defined as g(p, q) = sup{u(p) | u ∈ Pq} for
all p ∈ R \ {q}.
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Hyperbolic Riemann Surface Perron’s Family

Proposition
Let g(p, q) be a Green’s function for R with a singularity at q. Then

(i) g(p, q) > 0.
(ii) g(p, q) is harmonic for all p ∈ R \ {q}.
(iii) If (∆, ϕ) is a coordinate disk such that ϕ(q) = 0, then

h(p) = g(p, q) + log |ϕ(p)| is harmonic on ∆.

Proposition
Let g(p, q) be a Green’s function on R with a pole at q. Then

inf
p∈R

g(p, q) = 0.

Definition
Let R be a Riemann surface. Then, R is hyperbolic if it admits a Green’s
function.
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Fernando D́ıaz (IPN, México) Qp Space on Riemann Surfaces June 1, 2018 31 / 43



Qp Spaces on Riemann Surfaces Qp Spaces on R

Definition
Let 0 < p <∞ and R be a hyperbolic Riemann surface. We say that a
holomorphic function f : R → C belongs to Qp(R) if

‖f ‖2
Qp(R) = sup

z0∈R

∫∫
R
|f ′(z)|2(gR(z , z0))pdz ∧ dz̄ , (5)

.

Observations
In fact, let R = D be, we get the Bloch space. Moreover, we denote
Q0(R) and Q1(R) by D(R) and BMOA(R) as the Dirichlet and BMOA
spaces on R, respectively.
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Qp Spaces on Riemann Surfaces Area and Seminorm Inequality

Remark
Let L be the length of a closed curve and the area A of the planar region
on R2 that it encloses, then

4πA ≤ L2.

Proposition
Let R be a Riemann surface, Ω ⊂ R a precompact domain and Γ = ∂Ω
piecewise smooth boundary. If f : R → C is holomorphic, then the
following isoperimetric inequality holds:

4π|f (Ω)| ≤ |f (Γ)|2

where |f (Ω)| and |f (Γ)| denote the area of f (Ω) as covering surface and
the length of f (Γ) respectively.
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Qp Spaces on Riemann Surfaces Area and Seminorm Inequality

Theorem
Let R be a hyperbolic Riemann surface and gR(z , z0) be its Green’s
function with singularity at z0. For t ≥ 0, let
Rt = {z ∈ R | gR(z , z0) > t}. If f : R → C is holomorphic, then the
function

A(t) =
∫∫

Rt
|f ′(z)|2dz ∧ dz̄

has the following three properties:
(i) A(t) is continuous and decreasing with increasing t ≥ 0.
(ii) e2sA(s) ≤ e2tA(t) for s ≥ t ≥ 0.
(iii) For p ≥ 0 and t ≥ 0,

i
2

∫∫
Rt
|f ′(z)|2(gR(z , z0))pdz ∧ dz̄ =

∫ ∞
0

A(s)dsp = −
∫ ∞

t
spdA(S).

The right-side integral will be understood under Riemann-Stieljes
integration.
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Qp Spaces on Riemann Surfaces Area and Seminorm Inequality

Proposition
Given a nonnegative function A(t) on (0,∞) with the following two
properties:

(i) A(t) is continuous and decreasing with increasing t > 0.
(ii) e2t2A(t2) ≤ e2t1A(t1) when t2 ≥ t1 > 0.

For p, t ≥ 0, let Bp(t) = −
∫∞

t spdA(s). If p ≥ q ≥ 0, then

Bp(0) ≤ 2qΓ(p + 1)
2pΓ(q + 1)Bq(0).

Furthermore,

Bp(0) = 2qΓ(p + 1)
2pΓ(q + 1)Bq(0) <∞

if and only if

A(0) = lim
t→0

A(t) <∞ and A(t) = e−2tA(0), t > 0.
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Qp Spaces on Riemann Surfaces Area and Seminorm Inequality

Theorem
Let 0 ≤ q < p and R be a hyperbolic Riemann surface with w ∈ R. Then,

(i) For any holomorphic f : R → C,∫∫
R
|f ′(z)|2(gR(z ,w))pdz ∧ dz̄

≤
(2qΓ(p + 1)

2pΓ(q + 1)

)1/2 ∫∫
R
|f ′(z)|2(gR(z ,w))qdz ∧ dz̄

(ii) Qq(R) ⊂ Qp(R) with

‖f ‖2
Qp(R) ≤

(2qΓ(p + 1)
2pΓ(q + 1)

)
‖f ‖2
Qq(R), f ∈ Qq(R).
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Qp Spaces on Riemann Surfaces Limiting Case-Bloch Classes

Definition
Let p : D→ R be the universal covering mapping of a Riemann surface R
and suppose w0,w1 ∈ R. We define the hyperbolic distance between w0
and w1 on R by

ρR(w0,w1) := inf{ρD(z0, z1) | p(z0) = w0 and p(z1) = w1},

where ρD(z0, z1) is defined 4. The density of ρR at the point w1 is given by

λR(w1) = inf{λD(z1) | p(z1) = w1}.

Definition
Let R be a hyperbolic Riemann surface. We define the first type Bloch
space on R as

B(R) :=
{

F ∈ O(R) | ‖F‖B(R) = sup
w∈R

|F ′(w)|
λR(w)

}
<∞.

Fernando D́ıaz (IPN, México) Qp Space on Riemann Surfaces June 1, 2018 37 / 43



Qp Spaces on Riemann Surfaces Limiting Case-Bloch Classes

Definition
Let R be a hyperbolic Riemann surface with Green’s function gR(z , z0), by
using local coordinates in a neighborhood of z0, we can define the Robin’s
constant by

γR(z0) = lim
z→z0

(
gR(z , z0)− log 1

|z − z0|

)
.

Let cR(z0) = e−γR (z0) be the capacity density of R at z0.

Definition
Let R be a hyperbolic Riemann surface. We define the second type Bloch
space on R as

CB(R) :=
{

F ∈ O(R) | ‖F‖CB(R) = sup
w∈R

|F ′(w)|
cR(w) <∞

}
.
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Qp Spaces on Riemann Surfaces Limiting Case-Bloch Classes

Theorem
Let R be a hyperbolic Riemann surface, Fuc(D) a Fuschian group such
that D/Fuc(D) is biholomophic to R, and Ω the fundamental domain of
Fuc(D). Then

(i) CB(R) ⊂ B(R) i.e., there is a hyperbolic Riemann surface S such that

CB(S) 6= B(S).

(ii) If

δ(R) := inf
w∈Ω

 ∏
γ∈Fuc(D)

|σw (γ(w))|

 > 0

then

CB(S) = B(S).
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Qp Spaces on Riemann Surfaces Limiting Case-Bloch Classes

WHAT ELSE CAN I DO?
THANK YOU!
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