Q_p Space on Riemann Surfaces

Néstor Fernando Díaz Morera Instituto Politécnico Nacional, ESFM, México

I encuentro SCM-SMM, Universidad del Norte Barranquilla

June 1, 2018

Fernando Díaz (IPN, México)

June 1, 2018 1 / 43

Outline I

- Potential Theory's Reviews
 - Subharmonic Function
 - Hyperbolic Metric
 - Green's Function

Manifolds and Riemann surfaces

- Topological reviews
- Riemann surfaces
- Classical Examples
- Morphism of Riemann surfaces
- The uniformization Theorem [Poincaré-Koebe]
- Covering Theory
- Space of Holomorphic Functions
 - The Bloch space ${\cal B}$
 - The Dirichlet Space ${\cal D}$
 - Q_p Spaces

Outline II

- 4 Hyperbolic Riemann Surface
 - Potential Theory on R
 - Perron's Family

5 *Q_p* Spaces on Riemann Surfaces

- Q_p Spaces on R
- Area and Seminorm Inequality
- Limiting Case-Bloch Classes

Let (X, τ) be a topological space. We way a function $u: X \to [-\infty, \infty)$ is upper semicontinuous (u.s.c) if the set $\{x \in X \mid u(x) < \alpha\}$ belongs to τ for each $\alpha \in \mathbb{R}$. In other words, $u^{-1}([-\infty, \alpha))$ is open in X.

Let (X, τ) be a topological space. We way a function $u: X \to [-\infty, \infty)$ is upper semicontinuous (u.s.c) if the set $\{x \in X \mid u(x) < \alpha\}$ belongs to τ for each $\alpha \in \mathbb{R}$. In other words, $u^{-1}([-\infty, \alpha))$ is open in X.

Definition

Let $U \subset \mathbb{C}$ open. A function $u: U \to [-\infty, \infty)$ is called *subharmonic* if it is *upper semicontinuous* and satisfies the *local submean inequality*, i.e. given $w \in U$, there exists $\rho > 0$ such that

$$u(w) \leq rac{1}{2\pi}\int_0^{2\pi}u(w+re^{it})dt \quad ext{ for } r\in [0,
ho).$$

Fernando Díaz (IPN, México)

Let (X, τ) be a topological space. We way a function $u: X \to [-\infty, \infty)$ is upper semicontinuous (u.s.c) if the set $\{x \in X \mid u(x) < \alpha\}$ belongs to τ for each $\alpha \in \mathbb{R}$. In other words, $u^{-1}([-\infty, \alpha))$ is open in X.

Definition

Let $U \subset \mathbb{C}$ open. A function $u: U \to [-\infty, \infty)$ is called *subharmonic* if it is *upper semicontinuous* and satisfies the *local submean inequality*, i.e. given $w \in U$, there exists $\rho > 0$ such that

$$u(w) \leq rac{1}{2\pi}\int_0^{2\pi}u(w+re^{it})dt \quad ext{ for } r\in [0,
ho).$$

Example

If f is holomorphic on $U \subset \mathbb{C}$ open $\Rightarrow \log |f|$ is subharmonic on U.

Fernando Díaz (IPN, México)

(日) (四) (日) (日) (日)

Let u, v be subharmonic function on an open $U \subset \mathbb{C}$, then

(i) $\max(u, v)$ is subharmonic on U.

(ii) $\alpha u + \beta v$ is subharmonic on U for all $\alpha, \beta \geq 0$.

Theorem (Maximum Principle)

Let u be a subharmonic function on a domain $G \subset \mathbb{C}$.

(i) If u attains a global maximum on $G \Rightarrow u \equiv C$ for some constant C.

(ii) If $\lim_{z\to\zeta} u(z) \leq 0$ for all $\zeta \in \partial G \Rightarrow u \leq 0$ on G.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Criteria for Subharmonicity

Theorem

Let U be an open subset of \mathbb{C} and let $u : U \to [-\infty, \infty)$ be an upper semicontinuous function. Then the following are equivalent.

- (i) The function u is subharmonic on U.
- (ii) Whenever $\overline{\Delta}(w, \rho) \subset U$, then for $r < \rho$ and $t \in [0, 2\pi)$

$$u(w+re^{it}) \leq \frac{1}{2\pi} \int_0^{2\pi} \frac{\rho^2 - r^2}{\rho^2 - 2\rho r \cos(\theta - t) + r^2} \phi(w + \rho e^{i\theta}) d\theta.$$

(iii) (Harmonic Majoration) Whenever D is precompact subdomain of U and h is harmonic function on D satisfying

$$\lim_{z\to\zeta}\sup(u-h)(z)\leq 0 \ for \ \zeta\in\partial D,$$

then $u \leq h$ on D.

Let $\gamma: I \to \mathbb{D}$ be a smooth curve. The *length* is to be

$$L_
ho(\gamma)=\int_\gamma\left(rac{2}{1-|z|^2}
ight)|dz|=\int_0^1\left(rac{2}{1-|\gamma(t)|^2}
ight)|\gamma'(t)|dt.$$

Definition

Let

$$\lambda_{\mathbb{D}}(z) = rac{1}{1-|z|^2}$$

be the density of the hyperbolic distance in \mathbb{D} .

<.∃

Let $\gamma: I \to \mathbb{D}$ be a smooth curve. The *length* is to be

$$L_{
ho}(\gamma) = \int_{\gamma} \left(rac{2}{1-|z|^2}
ight) |dz| = \int_{0}^{1} \left(rac{2}{1-|\gamma(t)|^2}
ight) |\gamma'(t)| dt.$$

Definition

Let

$$\lambda_{\mathbb{D}}(z) = rac{1}{1-|z|^2}$$

be the *density of the hyperbolic distance* in \mathbb{D} . The *hyperbolic distance* between two points z_0 and z_1 in \mathbb{D} is given by

$$ho_{\mathbb{D}}(z_0, z_1) := \inf \left\{ \int_{\gamma} \lambda_{\mathbb{D}}(z) |dz|
ight\}.$$

Fernando Díaz (IPN, México)

June 1, 2018 7 / 43

< □ > < /□ >

Let G be a domain in the extended plane $\widehat{\mathbb{C}}$ and let $a \in \Omega$. A Green's function of G with singularity at a is a function $g : \Omega \setminus \{a\} \to \mathbb{R}$ which holds

- (i) g(z, a) is harmonic in $\Omega \setminus \{a\}$.
- (ii) $G(z) = g(z, a) + \log |z a|$ is harmonic is a disk about a.
- (iii) $\lim_{z\to w} g(z, a) = 0$ for each $w \in \partial \Omega$.

Proposition (Example)

Let $\varphi_a : \mathbb{D} \to \mathbb{D}$; $\varphi_a(z) \mapsto \frac{a-z}{1-\overline{a}z}$, $a \in \mathbb{D}$ be a Möbius transformation, then

$$g(z,a) = \log \frac{1}{|\varphi_a(z)|}$$

is the Green's function for \mathbb{D} with singularity at z = a.

A topological surface M is a Hausdorff topological space provided with collection $\{\varphi_i : U_i \to \varphi_i(U_i)\}$ of homeomorphisms (called charts) from open subsets $U_i \subset M$ (called coordinated neighbourhoods) to open subsets $\varphi_i(U) \subset \mathbb{C}$ such that:

(i)
$$M = \bigcup_{i \in I} U_i$$
.

(ii) Whenever $U_i \cup U_j \neq \emptyset$, the transition functions

$$\varphi_j \circ \varphi_i^{-1} : \varphi_i(U_i \cap U_j) \to \varphi_j(U_i \cap U_j)$$

is a homeomorphism.

A collection of charts fulfilling these properties is called a (topological) atlas, and the inverse φ_i^{-1} is called a parametrization.

Figure: The transition function between two coordinates charts.

Fernando Díaz (IPN, México)

Q_p Space on Riemann Surfaces

June 1, 2018 10 / 43

э

A Riemann surface R is a connected topological surface such the transition functions of the atlas are holomorphic mappings between open subsets of the complex plane \mathbb{C} i.e, it is pair (R, Σ) .

Example

Let $M = \mathbb{C}$, and let U be any open subset. Define $\varphi_U(x, y) = x + iy$ from (considered as a subject of \mathbb{C}) to the complex plane. This is a complex chart on \mathbb{C} . Moreover Let M be \mathbb{C} itself, considered topologically as \mathbb{R}^2 . Therefore, it is a Riemann surface which is called *complex plane*.

Example

Let $S^2 = \{(x, y, t) \in \mathbb{R}^3 | x^2 + y^2 + t^2 = 1\}$ be denoted the unit 2-sphere. Put t = 0 plane as a copy of the complex plane \mathbb{C} , with (x, y, 0) being identified with z = x + iy. Let's us considere the following two charts

$$egin{aligned} &U_1 = \mathbb{S}^2 \setminus \{(0,0,1)\}, \quad arphi_1(x,y,t) = rac{x}{1-t} + irac{y}{1-t} \ &U_2 = \mathbb{S}^2 \setminus \{(0,0,-1)\}, \quad arphi_2(x,y,t) = rac{x}{1+t} - irac{y}{1-t} \end{aligned}$$

Since $\frac{x - iy}{1 + t} = \frac{1 - t}{x + iy}$, it follows that the transition function is

$$\varphi_2 \circ \varphi_1^{-1}(z) = \frac{1}{z}$$

which is holomorphic on a domain $\varphi_1(U_1 \cap U_2) = \mathbb{C} \setminus \{0\}.$

Figure: Compatible charts on \mathbb{S}^2 .

Fernando Díaz (IPN, México)

3

< □ > < □ > < □ > < □ > < □ >

Let *M* be a Riemann surface and $Y \subset M$ a open subset. A function $f: Y \to \mathbb{C}$ is called **holomorphic**, if for every chart $\psi: U \to V$ on *M* the function

$$f \circ \psi^{-1} : \psi(U \cap Y) \to \mathbb{C}$$

is holomorphic in the usual sense on the open set $\psi(U \cap Y) \subset \mathbb{C}$.

Definition

Suppose *M* and *N* are Riemann surfaces. A continuous map $F : M \to N$ is called *holomorphic*, if for every pair of charts $\psi_1 : U_1 \to V_1$ on *M* and $\psi_2 : U_2 \to V_2$ on N with $f(U_1) \subset U_2$, the mapping

$$\psi_2 \circ F \circ \psi_1^{-1} : V_1 \to V_2$$

is holomorphic in the usual sense.

Figure: Morphism between Riemann surfaces.

э

Figure: Morphism between Riemann surfaces.

A function $F : M \to N$ is said to be a **biholormorphic** if it is a bijective and both $F : M \to N$ and $F^{-1} : N \to M$ are holomorphic.

Fernando Díaz (IPN, México)

Are $\mathbb{C}\ \widehat{\mathbb{C}}$ and \mathbb{D} biholomorphic to each other?

э

(日)

Are $\mathbb{C} \ \widehat{\mathbb{C}}$ and \mathbb{D} biholomorphic to each other?

Figure: Likely biholomorphisms among \mathbb{S}^2 , \mathbb{D} and \mathbb{C} .

Fernando Díaz (IPN, México)

June 1, 2018 16 / 43

Theorem (Riemann Mapping Theorem)

Any non-empty simply connected domain $\Omega \subset \mathbb{C}$, which is not \mathbb{C} , is **biholomorphic** to the unit disc \mathbb{D} .

Theorem (Riemann Mapping Theorem)

Any non-empty simply connected domain $\Omega \subset \mathbb{C}$, which is not \mathbb{C} , is **biholomorphic** to the unit disc \mathbb{D} .

They aren't biholomorphic among them since:

 $\diamond \ \mu : \mathbb{C} \to \mathbb{D}$ neither by Liouville's theorem.

 $\diamond \ \psi: \mathbb{S}^2 \to \mathbb{D} \text{ and } \phi: \mathbb{S}^2 \to \mathbb{C} \text{ neither by compactness of } \mathbb{S}^2.$

However, $\mathbb H$ and $\mathbb D$ are biholomorphic via the following Möbius transformation

$$\varphi(z)=\frac{z-i}{z+i}$$

Are there other Riemann surfaces beside $\mathbb{C},\,\mathbb{D}$ and $\widehat{\mathbb{C}}?$

э

A D N A B N A B N A B N

Are there other Riemann surfaces beside $\mathbb{C},\,\mathbb{D}$ and $\widehat{\mathbb{C}}?$

Theorem (The Uniformization Theorem (Poincaré, Koebe -1907)) Every simply connected Riemann surface M is biholomorphic either to

- D (hyperbolic),
- C (parabolic),
- $\widehat{\mathbb{C}}$ (elliptic).

Let *E* and *X* be topological surfaces. A continuous mapping $\pi : E \to X$ is a *covering map* if the following holds.

(i) Every point $x \in X$ has a open neighborhood U such that its preimage $\pi^{-1}(U)$ can be represented as

$$\pi^{-1}(U) = \bigsqcup_{j \in J} V_j.$$

where the $\{V_j\}_{j \in J}$ are disjoint open subsets of E. (ii) In particular, π is a local homeomorphism.

Example

Let $X = \mathbb{S}^1$ and $E = \mathbb{R}$ be the circle and the real line respectively. Then the mapping $p(t) = e^{2\pi i t}$ is a covering.

If X has a holomorphic structure, then E inherits a unique Riemann surface structure such that π is holomorphic.

Definition

Let $\pi: E \to R$ be a covering map. It is called a universal covering of a topological space E if E is simply connected.

Theorem

The universal covering for any Riemann surface R is either \mathbb{C} , \mathbb{D} or \mathbb{S}^2

Theorem

Every Riemann surface R is biholomorphic to a quotient \tilde{S}/Γ , where \tilde{S} is $\mathbb{D}, \mathbb{C}, \widehat{\mathbb{C}}$ and Γ is a group of automorphism of \tilde{S} which acts freely and properly discontinuously.

Fernando Díaz (IPN, México)

イロト イヨト イヨト イヨト

A function f is called a **Bloch function** if it is holomorphic on $\mathbb D$ and

$$\sup_{z\in\mathbb{D}}(1-|z|^2)|f'(z)|<+\infty. \tag{1}$$

We will denote ${\cal B}$ the family of all Bloch functions. It's called a $little \ Bloch$ function if

$$\lim_{|z|\to 1}(1-|z|^2)|f'(z)|=0.$$

(2)

A function f is called a **Bloch function** if it is holomorphic on \mathbb{D} and

$$\sup_{z\in\mathbb{D}}(1-|z|^2)|f'(z)|<+\infty. \tag{1}$$

We will denote ${\cal B}$ the family of all Bloch functions. It's called a ${\bf little}\ {\bf Bloch}$ function if

$$\lim_{|z|\to 1}(1-|z|^2)|f'(z)|=0.$$

Proposition

- \diamond Every bounded function $f : \mathbb{D} \to \mathbb{C}$ is a Bloch function.
- \diamond If $f \in \mathcal{B}$, then for all $z \in \mathbb{D}$

$$|f(z)| \leq |f(0)| + M|\lambda(|z|)|$$

where $\lambda(z) = \log(1-z)$ and $M = \sup_{z \in \mathbb{D}} (1-|z|^2) |f'(z)|$.

(2

 \diamond The set ${\cal B}$ equipped with the norm

$$\|f\|_{\mathcal{B}} = |f(0)| + \sup_{z \in \mathbb{D}} (1 - |z|^2) |f'(z)|$$

is a Banach space.

- $\diamond \mathcal{B}$ is not separable.
- ◇ Let $f \in \mathcal{B}$ and $\varphi : \mathbb{D} \to \mathbb{D}$ be a conformal mapping of \mathbb{D} onto itself, then $h(z) = f(\varphi(z)) \in \mathcal{B}$.

A Dirichlet space $\mathcal D$ is the collection of all holomorphic function on $\mathbb D$ such that

$$\iint_{\mathbb{D}} |f'(z)|^2 dx dy < \infty \text{ where } z = x + iy.$$

It can equipped with the following norm:

$$\|f\|_{\mathcal{D}} = \left(|f(0)|^2 + \iint_{\mathbb{D}} |f'(z)|^2 dx dy\right)^{1/2}.$$

Fernando Díaz (IPN, México)

If $f(z) = \sum_{n=0}^{\infty} a_n z^n$ is holomorphic on \mathbb{D} , then

$$\frac{1}{\pi}\iint_{\mathbb{D}}|f'(z)|^2dxdy=\sum_{n=1}^{\infty}n|a_n|^2.$$

Fernando Díaz (IPN, México)

э

(日) (四) (日) (日) (日)

If $f(z) = \sum_{n=0}^{\infty} a_n z^n$ is holomorphic on \mathbb{D} , then

$$\frac{1}{\pi}\iint_{\mathbb{D}}|f'(z)|^2dxdy=\sum_{n=1}^{\infty}n|a_n|^2.$$

Observations

A briefly properties about \mathcal{D} spaces are mentioned in the following.

- \diamond The \mathcal{D} space is conformally equivalent.
- \diamond The \mathcal{D} space is a Banach space with the norm $\|\cdot\|_{\mathcal{D}}$.

For p > 0, let Q_p denote the space of all holomorphic function satisfying

$$\sup_{\alpha\in\mathbb{D}}\iint_{\mathbb{D}}|f'(z)|^2g(z,\alpha)^pdxdy<\infty, \tag{3}$$

where $g(z, \alpha)$ is the Green's function with a logarithm singularity at α .

For p > 0, let \mathcal{Q}_p denote the space of all holomorphic function satisfying

$$\sup_{\alpha\in\mathbb{D}}\iint_{\mathbb{D}}|f'(z)|^2g(z,\alpha)^pdxdy<\infty, \tag{3}$$

where $g(z, \alpha)$ is the Green's function with a logarithm singularity at α .

Definition

For p > 0, let $Q_{p,0}$ denote the space of all holomorphic function satisfying

$$\lim_{|\alpha| \to 1} \iint_{\mathbb{D}} |f'(z)|^2 g(z, \alpha)^p dx dy = 0,$$
(4)

where $g(z, \alpha)$ is the Green's function with a logarithm singularity at α .

Observations

We will view a briefly glance about Q_p and $Q_{p,0}$. In fact, how they relate with the previous spaces.

$$\diamond$$
 For $p = 0$, it follows $\mathcal{Q}_p = \mathcal{D}$.

$$\diamond$$
 For $p > 1$, it follows $\mathcal{Q}_p = \mathcal{B}$.

 \diamond For p > 1, $\mathcal{Q}_{p,0} = \mathcal{B}_0$.

Theorem

Let $f:\mathbb{D}\to\mathbb{C}$ be a holomorphic function, then the following conditions are equivalent

(i)
$$f \in \mathcal{B}$$
.
(ii) $\{f\}_{\mathcal{Q}_p} < \infty$ for all $p > 1$.
(iii) $\{f\}_{\mathcal{Q}_p} < \infty$ for some $p > 1$.

Theorem

For
$$0 , it holds $\mathcal{Q}_p \subset \mathcal{Q}_q$.$$

Let *R* be a Riemann surface. A real-valued function $h: R \to \mathbb{R}$ is *harmonic* at *p* belonging to *R* if there exists a coordinate disk (Δ, φ) containing *p* such that $h \circ \varphi^{-1} : \mathbb{D} \to \mathbb{R}$ is harmonic function. If *h* is harmonic at each $p \in R$, we say *h* is a **harmonic function** on *R*.

Let *R* be a Riemann surface. A real-valued function $h: R \to \mathbb{R}$ is *harmonic* at *p* belonging to *R* if there exists a coordinate disk (Δ, φ) containing *p* such that $h \circ \varphi^{-1} : \mathbb{D} \to \mathbb{R}$ is harmonic function. If *h* is harmonic at each $p \in R$, we say *h* is a **harmonic function** on *R*.

Definition

A continuous function $u: R \to [-\infty, \infty)$ is **subharmonic** if for every coordinate disk (Δ, φ) and $h: \overline{\Delta} \to \mathbb{R}$ is a harmonic function such that $u(p) \leq h(p)$ for all $p \in \partial \Delta$, then $u(p) \leq h(p)$ for all $p \in \Delta$.

Theorem (Maximum Principle)

Let u be a subharmonic function on a Riemann surface R. If u attains a maximum at $p \in R$, then u is a constant function.

< □ > < 同 > < 回 > < 回 > < 回 >

Observations

Let (Δ, φ) be a coordinate disk and u be a subharmonic function on R. By using the Poisson integral, we can solve the Dirichlet problem

$$\begin{cases} \frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} = 0 & \text{ in } \mathbb{D} \\ w = u \circ \varphi^{-1} & \text{ on } \partial \mathbb{D}. \end{cases}$$

Let $u_{\Delta}: R \to \mathbb{R}$ by

$$u_{\Delta}(p) = egin{cases} u(p) & ext{if } p
ot\in \Delta \ (w \circ arphi)(p) & ext{if } p \in \Delta. \end{cases}$$

Then u_{Δ} is continuous on R and harmonic on Δ .

Fernando Díaz (IPN, México)

A **Perron family** on R is a collection \mathcal{F} of subharmonic functions such that

- (i) If $u_1, u_2 \in \mathcal{F}$, then max $\{u_1, u_2\} \in \mathcal{F}$.
- (ii) If $u \in \mathcal{F}$, then $u_{\Delta} \in \mathcal{F}$.

A **Perron family** on R is a collection \mathcal{F} of subharmonic functions such that

(i) If
$$u_1, u_2 \in \mathcal{F}$$
, then max $\{u_1, u_2\} \in \mathcal{F}$.

(ii) If $u \in \mathcal{F}$, then $u_{\Delta} \in \mathcal{F}$.

Theorem

Let \mathcal{F} be a Perron family on R. Then $u(p) = \sup\{v(p) \mid v \in \mathcal{F}\}$ is either harmonic or $u(p) = +\infty$ for all $p \in R$.

Fix a point $q \in R$ and let (Δ, φ) be a coordinate disk containing q such that $\varphi(q) = 0$. Let \mathcal{P} be a family of subharmonic functions on $R \setminus \{q\}$ such that

- (i) Every $u \in \mathcal{P}_q$ has compact support.
- (ii) Every $u \in \mathcal{P}_q$ is such that $v(p) = u(p) + \log |\varphi(p)|$ is subharmonic on Δ .

Then, \mathcal{P}_q is a Perron family on $R \setminus \{q\}$.

Definition

Suppose sup{ $u(p) : u \in \mathcal{P}_q$ } < ∞ for some $p \in R$. A **Green's function** for R with singularity at q is defined as $g(p,q) = \sup\{u(p) \mid u \in \mathcal{P}_q\}$ for all $p \in R \setminus \{q\}$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let g(p,q) be a Green's function for R with a singularity at q. Then

- (i) g(p,q) > 0.
- (ii) g(p,q) is harmonic for all $p \in R \setminus \{q\}$.
- (iii) If (Δ, φ) is a coordinate disk such that $\varphi(q) = 0$, then $h(p) = g(p,q) + \log |\varphi(p)|$ is harmonic on Δ .

Proposition

Let g(p,q) be a Green's function on R with a pole at q. Then

 $\inf_{p\in R}g(p,q)=0.$

Fernando Díaz (IPN, México)

Let g(p,q) be a Green's function for R with a singularity at q. Then

- (i) g(p,q) > 0.
- (ii) g(p,q) is harmonic for all $p \in R \setminus \{q\}$.
- (iii) If (Δ, φ) is a coordinate disk such that $\varphi(q) = 0$, then $h(p) = g(p,q) + \log |\varphi(p)|$ is harmonic on Δ .

Proposition

Let g(p,q) be a Green's function on R with a pole at q. Then

 $\inf_{p\in R}g(p,q)=0.$

Definition

Let R be a Riemann surface. Then, R is **hyperbolic** if it admits a Green's function.

Fernando Díaz (IPN, México)

June 1, 2018 31 / 43

Let 0 and <math>R be a hyperbolic Riemann surface. We say that a holomorphic function $f : R \to \mathbb{C}$ belongs to $\mathcal{Q}_p(R)$ if

$$\|f\|_{\mathcal{Q}_{p}(R)}^{2} = \sup_{z_{0} \in R} \iint_{R} |f'(z)|^{2} (g_{R}(z, z_{0}))^{p} dz \wedge d\bar{z},$$
(5)

Observations

In fact, let $R = \mathbb{D}$ be, we get the Bloch space. Moreover, we denote $\mathcal{Q}_0(R)$ and $\mathcal{Q}_1(R)$ by $\mathcal{D}(R)$ and $\mathcal{BMOA}(R)$ as the Dirichlet and BMOA spaces on R, respectively.

Fernando Díaz (IPN, México)

Remark

Let *L* be the length of a closed curve and the area *A* of the planar region on \mathbb{R}^2 that it encloses, then

$$4\pi A \leq L^2$$
.

Proposition

Let R be a Riemann surface, $\Omega \subset R$ a precompact domain and $\Gamma = \partial \Omega$ piecewise smooth boundary. If $f : R \to \mathbb{C}$ is holomorphic, then the following isoperimetric inequality holds:

$$4\pi |f(\Omega)| \leq |f(\Gamma)|^2$$

where $|f(\Omega)|$ and $|f(\Gamma)|$ denote the area of $f(\Omega)$ as covering surface and the length of $f(\Gamma)$ respectively.

Theorem

Let R be a hyperbolic Riemann surface and $g_R(z, z_0)$ be its Green's function with singularity at z_0 . For $t \ge 0$, let $R_t = \{z \in R \mid g_R(z, z_0) > t\}$. If $f : R \to \mathbb{C}$ is holomorphic, then the function

$$A(t) = \iint_{R_t} |f'(z)|^2 dz \wedge d\bar{z}$$

has the following three properties:

(i) A(t) is continuous and decreasing with increasing $t \ge 0$. (ii) $e^{2s}A(s) \le e^{2t}A(t)$ for $s \ge t \ge 0$. (iii) For $p \ge 0$ and $t \ge 0$, $i \le t \le 0$.

$$\frac{i}{2}\iint_{R_t}|f'(z)|^2(g_R(z,z_0))^pdz\wedge d\bar{z}=\int_0^\infty A(s)ds^p=-\int_t^\infty s^pdA(S).$$

34 / 43

 The right-side integral will be understood under Riemann-Stieljes integration.

 Fernando Díaz (IPN, México)

 Qp Space on Riemann Surfaces
 June 1, 2018

Given a nonnegative function A(t) on $(0, \infty)$ with the following two properties:

(i) A(t) is continuous and decreasing with increasing t > 0. (ii) $e^{2t_2}A(t_2) \le e^{2t_1}A(t_1)$ when $t_2 \ge t_1 > 0$. For $p, t \ge 0$, let $B_p(t) = -\int_t^\infty s^p dA(s)$. If $p \ge q \ge 0$, then

$$B_p(0) \leq \frac{2^q \Gamma(p+1)}{2^p \Gamma(q+1)} B_q(0).$$

Furthermore,

$$B_p(0)=rac{2^q\Gamma(p+1)}{2^p\Gamma(q+1)}B_q(0)<\infty$$

if and only if

$$A(0) = \lim_{t \to 0} A(t) < \infty \quad and \quad A(t) = e^{-2t}A(0), \quad t > 0.$$

Fernando Díaz (IPN, México)

Theorem

Let $0 \le q < p$ and R be a hyperbolic Riemann surface with $w \in R$. Then, (i) For any holomorphic $f : R \to \mathbb{C}$,

$$\int\int_{R} |f'(z)|^2 (g_R(z,w))^p dz \wedge dar{z}$$

 $\leq \left(rac{2^q \Gamma(p+1)}{2^p \Gamma(q+1)}
ight)^{1/2} \int\int_{R} |f'(z)|^2 (g_R(z,w))^q dz \wedge dar{z}$

(ii) $\mathcal{Q}_q(R) \subset \mathcal{Q}_p(R)$ with

$$\|f\|^2_{\mathcal{Q}_p(R)} \leq \left(rac{2^q \Gamma(p+1)}{2^p \Gamma(q+1)}
ight) \|f\|^2_{\mathcal{Q}_q(R)}, \quad f \in \mathcal{Q}_q(R).$$

Fernando Díaz (IPN, México)

Let $p : \mathbb{D} \to R$ be the universal covering mapping of a Riemann surface R and suppose $w_0, w_1 \in R$. We define the *hyperbolic distance* between w_0 and w_1 on R by

$$\rho_R(w_0, w_1) := \inf \{ \rho_{\mathbb{D}}(z_0, z_1) \mid p(z_0) = w_0 \text{ and } p(z_1) = w_1 \},$$

where $\rho_{\mathbb{D}}(z_0, z_1)$ is defined 4. The density of ρ_R at the point w_1 is given by

$$\lambda_R(w_1) = \inf\{\lambda_{\mathbb{D}}(z_1) \mid p(z_1) = w_1\}.$$

Definition

Let R be a hyperbolic Riemann surface. We define the first type Bloch space on R as

$$\mathcal{B}(R) := \left\{ F \in \mathcal{O}(R) \mid \|F\|_{\mathcal{B}(R)} = \sup_{w \in R} \frac{|F'(w)|}{\lambda_R(w)} \right\} < \infty.$$

Let *R* be a hyperbolic Riemann surface with Green's function $g_R(z, z_0)$, by using local coordinates in a neighborhood of z_0 , we can define the *Robin's* constant by

$$\gamma_R(z_0) = \lim_{z \to z_0} \left(g_R(z, z_0) - \log \frac{1}{|z - z_0|} \right)$$

Let $c_R(z_0) = e^{-\gamma_R(z_0)}$ be the capacity density of R at z_0 .

Definition

Let R be a hyperbolic Riemann surface. We define the second type Bloch space on R as

$$\mathcal{CB}(R) := \left\{ F \in \mathcal{O}(R) \mid \|F\|_{\mathcal{CB}(R)} = \sup_{w \in R} \frac{|F'(w)|}{c_R(w)} < \infty \right\}.$$

Fernando Díaz (IPN, México)

Theorem

Let R be a hyperbolic Riemann surface, $Fuc(\mathbb{D})$ a Fuschian group such that $\mathbb{D}/Fuc(\mathbb{D})$ is biholomophic to R, and Ω the fundamental domain of $Fuc(\mathbb{D})$. Then

(i) $CB(R) \subset B(R)$ i.e., there is a hyperbolic Riemann surface S such that

 $\mathcal{CB}(S) \neq \mathcal{B}(S).$

(ii) If

$$\delta(R) := \inf_{w \in \Omega} \left\{ \prod_{\gamma \in Fuc(\mathbb{D})} |\sigma_w(\gamma(w))| \right\} > 0$$

then

$$CB(S) = B(S).$$

Fernando Díaz (IPN, México)

Qp Space on Riemann Surfaces

▶ ▲ 볼 ▶ 볼 ∽ ९... June 1, 2018 39 / 43

< □ > < □ > < □ > < □ > < □ > < □ >

WHAT ELSE CAN I DO?

THANK YOU!

Fernando Díaz (IPN, México)

Qp Space on Riemann Surfaces

June 1, 2018 40 / 43

э

(日) (四) (日) (日) (日)

Main references I

Note Forster.

Lectures on Riemann Surfaces, 1993.

📎 Jhon M. Lee,

Introduction to Topological Manifolds 2000.

📎 Jhon M. Lee,

Introduction to Smooth Manifolds 2002.

Jie Xiao.

Geometric Q_p Functions, 2005.

N. Danikas

Some Banach spaces of analytic functions complex analysis 1999.

Main references II

J. Ristioja, R. Aulaskari, Y. He and R. Zhao Q_p on Riemann Surfaces

Canad. J. Math. 1998.

🐚 Lars Ahlfors,

Conformal Invariant 2010.

🍉 J. B. Conway,

Functions of one complex variable, 1978.

R. Aulaskari and H. Chen Q_n norm and area inequality J. Funct. Anal, (221):1-24 2005.

📎 B. Farb and D. Margalit,

A Primer on Mapping Class Groups, Princeton University Pres, 2012

Main references III

Hershel Farkas and Irwin Kra *Riemann surfaces*

Springer-Verlag 1993

嗪 Thomas Ransford,

Potential Theorey in the Complex Plane, Cambridge university Press, 1995

John Harper and Marvin Greenberg,

Algebraic Topology: a first course, Cummings Publishing Company, 1941