 Q_p Space on Riemann Surfaces

Néstor Fernando Díaz Morera Instituto Politécnico Nacional, ESFM, México

I encuentro SCM-SMM, Universidad del Norte Barranquilla

June 1, 2018

 QQ

 \rightarrow \rightarrow \rightarrow

Outline I

- [Potential Theory's Reviews](#page-3-0)
	- **•** [Subharmonic Function](#page-3-0)
	- [Hyperbolic Metric](#page-8-0)
	- **[Green's Function](#page-10-0)**

2 [Manifolds and Riemann surfaces](#page-11-0)

- [Topological reviews](#page-11-0)
- [Riemann surfaces](#page-13-0)
- [Classical Examples](#page-14-0)
- [Morphism of Riemann surfaces](#page-16-0)
- The uniformization Theorem [Poincaré-Koebe]
- **[Covering Theory](#page-25-0)**
- [Space of Holomorphic Functions](#page-27-0)
	- [The Bloch space](#page-27-0) β
	- \bullet [The Dirichlet Space](#page-30-0) $\mathcal D$
	- \bullet \mathcal{Q}_p [Spaces](#page-33-0)

 QQQ

Outline II

- 4 [Hyperbolic Riemann Surface](#page-36-0)
	- [Potential Theory on](#page-36-0) R
	- **•** [Perron's Family](#page-39-0)

 \overline{Q}_p [Spaces on Riemann Surfaces](#page-44-0)

- \bullet Q_p [Spaces on](#page-44-0) R
- [Area and Seminorm Inequality](#page-45-0)
- **[Limiting Case-Bloch Classes](#page-49-0)**

 QQQ

Let (X, τ) be a topological space. We way a function $u : X \to [-\infty, \infty)$ is upper semicontinuous (u.s.c) if the set $\{x \in X \mid u(x) < \alpha\}$ belongs to τ for each $\alpha\in\mathbb{R}.$ In other words, $\mathsf{u}^{-1}([-\infty,\alpha))$ is open in $X.$

 QQ

Let (X, τ) be a topological space. We way a function $u : X \to [-\infty, \infty)$ is upper semicontinuous (u.s.c) if the set $\{x \in X \mid u(x) < \alpha\}$ belongs to τ for each $\alpha\in\mathbb{R}.$ In other words, $\mathsf{u}^{-1}([-\infty,\alpha))$ is open in $X.$

Definition

Let $U \subset \mathbb{C}$ open. A function $u: U \to [-\infty, \infty)$ is called *subharmonic* if it is upper semicontinuous and satisfies the local submean inequality, i.e. given $w \in U$, there exists $\rho > 0$ such that

$$
u(w) \leq \frac{1}{2\pi} \int_0^{2\pi} u(w + re^{it}) dt \quad \text{ for } r \in [0, \rho).
$$

 QQQ

Let (X, τ) be a topological space. We way a function $u : X \to [-\infty, \infty)$ is upper semicontinuous (u.s.c) if the set $\{x \in X \mid u(x) < \alpha\}$ belongs to τ for each $\alpha\in\mathbb{R}.$ In other words, $\mathsf{u}^{-1}([-\infty,\alpha))$ is open in $X.$

Definition

Let $U \subset \mathbb{C}$ open. A function $u: U \to [-\infty, \infty)$ is called *subharmonic* if it is upper semicontinuous and satisfies the local submean inequality, i.e. given $w \in U$, there exists $\rho > 0$ such that

$$
u(w) \leq \frac{1}{2\pi} \int_0^{2\pi} u(w + re^{it}) dt \quad \text{ for } r \in [0, \rho).
$$

Example

If f is holomorphic on $U \subset \mathbb{C}$ open \Rightarrow log |f| is subharmonic on U.

 Ω

イロト イ押ト イヨト イヨト

Let u, v be subharmonic function on an open $U \subset \mathbb{C}$, then

(i) max(u*,* v) is subharmonic on U.

(ii) $\alpha u + \beta v$ is subharmonic on U for all $\alpha, \beta > 0$.

Theorem (Maximum Principle)

Let u be a subharmonic function on a domain $G\subset\mathbb{C}$.

(i) If u attains a global maximum on $G \Rightarrow u \equiv C$ for some constant C. (ii) If $\lim_{z\to c} u(z) < 0$ for all $\zeta \in \partial G \Rightarrow u < 0$ on G.

 QQQ

∢何 ▶ ∢ ヨ ▶ ∢ ヨ ▶

Criteria for Subharmonicity

Theorem

Let U be an open subset of $\mathbb C$ and let $u: U \to [-\infty,\infty)$ be an upper semicontinuous function. Then the following are equivalent.

- (i) The function u is subharmonic on U.
- (ii) Whenever $\overline{\Delta}(w, \rho) \subset U$, then for $r < \rho$ and $t \in [0, 2\pi)$

$$
u(w+re^{it})\leq \frac{1}{2\pi}\int_0^{2\pi}\frac{\rho^2-r^2}{\rho^2-2\rho r\cos(\theta-t)+r^2}\phi(w+\rho e^{i\theta})d\theta.
$$

(iii) (Harmonic Majoration) Whenever D is precompact subdomain of U and h is harmonic function on D satisfying

$$
\lim_{z\to\zeta}\sup(u-h)(z)\leq 0 \text{ for } \zeta\in\partial D,
$$

then $u \leq h$ on D.

Let $\gamma : I \to \mathbb{D}$ be a smooth curve. The *length* is to be

$$
L_{\rho}(\gamma)=\int_{\gamma}\left(\frac{2}{1-|z|^2}\right)|dz|=\int_0^1\left(\frac{2}{1-|\gamma(t)|^2}\right)|\gamma'(t)|dt.
$$

Definition

Let

$$
\lambda_{\mathbb{D}}(z)=\frac{1}{1-|z|^2}
$$

be the density of the hyperbolic distance in D.

÷,

Kロト K同下

 \rightarrow

 298

Let $\gamma : I \to \mathbb{D}$ be a smooth curve. The *length* is to be

$$
L_{\rho}(\gamma) = \int_{\gamma} \left(\frac{2}{1 - |z|^2} \right) |dz| = \int_0^1 \left(\frac{2}{1 - |\gamma(t)|^2} \right) |\gamma'(t)| dt.
$$

Definition

Let

$$
\lambda_{\mathbb{D}}(z)=\frac{1}{1-|z|^2}
$$

be the density of the hyperbolic distance in $\mathbb D$. The hyperbolic distance between two points z_0 and z_1 in $\mathbb D$ is given by

$$
\rho_{\mathbb{D}}(z_0,z_1):=\inf\left\{\int_{\gamma}\lambda_{\mathbb{D}}(z)|dz|\right\}.
$$

 290

←ロト ←何ト

4 重

Let G be a domain in the extended plane \widehat{C} and let $a \in \Omega$. A Green's function of G with singularity at a is a function $g : \Omega \setminus \{a\} \to \mathbb{R}$ which holds

- (i) $g(z, a)$ is harmonic in $\Omega \setminus \{a\}$.
- (ii) $G(z) = g(z, a) + \log|z a|$ is harmonic is a disk about a.

 (iii) lim_{z→w} $g(z, a) = 0$ for each $w \in \partial \Omega$.

Proposition (Example)

Let $\varphi_a: \mathbb{D} \to \mathbb{D}$; $\varphi_a(z) \mapsto \frac{a-z}{1-\overline{a}z}$, $a \in \mathbb{D}$ be a Möbius transformation, then

$$
g(z,a) = \log \frac{1}{|\varphi_a(z)|}
$$

is the Green's function for $\mathbb D$ with singularity at $z = a$.

A topological surface M is a Hausdorff topological space provided with $\mathsf{collection}\ \{\varphi_i: \mathit{U_i} \rightarrow \varphi_i(\mathit{U_i})\}$ of homeomorphisms (called charts) from open subsets $U_i \subset M$ (called coordinated neighbourhoods) to open subsets φ _i(U) ⊂ $\mathbb C$ such that:

$$
(i) M = \bigcup_{i \in I} U_i.
$$

(ii) Whenever $U_i \cup U_j \neq \emptyset$, the transition functions

$$
\varphi_j\circ\varphi_i^{-1}:\varphi_i(U_i\cap U_j)\to\varphi_j(U_i\cap U_j)
$$

is a homeomorphism.

A collection of charts fulfilling these properties is called a (topological) atlas, and the inverse φ_i^{-1} is called a parametrization.

 QQQ

Figure: The transition function between two coordinates charts.

 298

造

イロト イ部 トイモ トイモト

A Riemann surface R is a connected topological surface such the transition functions of the atlas are holomorphic mappings between open subsets of the complex plane $\mathbb C$ i.e, it is pair (R,Σ) .

Example

Let $M = \mathbb{C}$, and let U be any open subset. Define $\varphi_U(x, y) = x + iy$ from (considered as a subject of \mathbb{C}) to the complex plane. This is a complex chart on $\mathbb C$. Moreover Let M be $\mathbb C$ itself, considered topologically as $\mathbb R^2.$ Therefore, it is a Riemann surface which is called complex plane.

 Ω

Example

Let $\mathbb{S}^2 = \{ (x, y, t) \in \mathbb{R}^3 \mid x^2 + y^2 + t^2 = 1 \}$ be denoted the unit 2-sphere. Put $t = 0$ plane as a copy of the complex plane \mathbb{C} , with $(x, y, 0)$ being identified with $z = x + iy$. Let's us considere the following two charts

$$
U_1 = \mathbb{S}^2 \setminus \{ (0,0,1) \}, \quad \varphi_1(x,y,t) = \frac{x}{1-x} + i \frac{y}{1-y}
$$

$$
U_2 = \mathbb{S}^2 \setminus \{ (0,0,-1) \}, \quad \varphi_2(x,y,t) = \frac{x}{1+t} - i \frac{y}{1+t}
$$

Since $\frac{x - iy}{1 + t} = \frac{1 - t}{x + iy}$ $\frac{1}{x+iy}$, it follows that the transition function is

$$
\varphi_2\circ\varphi_1^{-1}(z)=\frac{1}{z}
$$

which is holomorphic on a domain $\varphi_1(U_1 \cap U_2) = \mathbb{C} \setminus \{0\}.$

つへへ

Figure: Compatible charts on \mathbb{S}^2 .

重 2990

イロト イ部 トイヨ トイヨト

Let M be a Riemann surface and $Y \subset M$ a open subset. A function $f: Y \to \mathbb{C}$ is called **holomorphic**, if for every chart $\psi: U \to V$ on M the function

$$
f\circ\psi^{-1}:\psi(U\cap Y)\to\mathbb{C}
$$

is holomorphic in the usual sense on the open set $\psi(U \cap Y) \subset \mathbb{C}$.

Definition

Suppose M and N are Riemann surfaces. A continuous map $F : M \to N$ is called *holomorphic*, if for every pair of charts $\psi_1 : U_1 \to V_1$ on M and $\psi_2: U_2 \to V_2$ on N with $f(U_1) \subset U_2$, the mapping

$$
\psi_2 \circ F \circ \psi_1^{-1} : V_1 \to V_2
$$

is holomorphic in the usual sense.

 200

Figure: Morphism between Riemann surfaces.

不自主

重

Þ

 $\left(1\right)$ \sim 298

Figure: Morphism between Riemann surfaces.

A function $F : M \to N$ is said to be a **biholormorphic** if it is a bijective and both $F:M\to N$ and $F^{-1}:N\to M$ are holomorphic.

4 0 8

 Ω

Are \mathbb{C} $\widehat{\mathbb{C}}$ and $\mathbb D$ biholomorphic to each other?

造

 QQ

 4 ロ } 4 \overline{m} } 4 \overline{m} } 4 \overline{m} }

Are \mathbb{C} $\widehat{\mathbb{C}}$ and $\mathbb D$ biholomorphic to each other?

Figure: Likely biholomorphisms among \mathbb{S}^2 , $\mathbb D$ and $\mathbb C$.

 298

Theorem (Riemann Mapping Theorem)

Any non-empty simply connected domain $\Omega \subset \mathbb{C}$, which is not \mathbb{C} , is **biholomorphic** to the unit disc D.

 QQ

Theorem (Riemann Mapping Theorem)

Any non-empty simply connected domain $\Omega \subset \mathbb{C}$, which is not \mathbb{C} , is **biholomorphic** to the unit disc D .

They aren't biholomorphic among them since:

 \Diamond μ : $\mathbb{C} \rightarrow \mathbb{D}$ neither by Liouville's theorem.

 $\Diamond \ \psi : \mathbb{S}^2 \to \mathbb{D}$ and $\phi : \mathbb{S}^2 \to \mathbb{C}$ neither by compactness of $\mathbb{S}^2.$

However, $\mathbb H$ and $\mathbb D$ are biholomorphic via the following Möbius transformation

$$
\varphi(z)=\frac{z-i}{z+i}
$$

 QQ

Are there other Riemann surfaces beside \mathbb{C}, \mathbb{D} and $\widehat{\mathbb{C}}$?

 ORO 画

 4 ロ } 4 \overline{m} } 4 \overline{m} } 4 \overline{m} }

Are there other Riemann surfaces beside \mathbb{C}, \mathbb{D} and \mathbb{C} ?

Theorem (The Uniformization Theorem (Poincar´e, Koebe -1907)) Every simply connected Riemann surface M is biholomorphic either to

- \bullet $\mathbb D$ (hyperbolic),
- $\mathbb C$ (parabolic),
- \cdot $\hat{\mathbb{C}}$ (elliptic).

 QQQ

Let E and X be topological surfaces. A continuous mapping $\pi : E \to X$ is a covering map if the following holds.

(i) Every point $x \in X$ has a open neighborhood U such that its preimage $\pi^{-1}(U)$ can be represented as

$$
\pi^{-1}(U)=\bigsqcup_{j\in J}V_j.
$$

where the $\{V_i\}_{i\in J}$ are disjoint open subsets of E. (i) In particaular, π is a local homeomorphism.

Example

Let $X=\mathbb{S}^1$ and $E=\mathbb{R}$ be the circle and the real line respectively. Then the mapping $p(t) = e^{2\pi i t}$ is a covering.

つへへ

If X has a holomorphic structure, then E inherits a unique Riemann surface structure such that *π* is holomorphic.

Definition

Let π : $E \rightarrow R$ be a covering map. It is called a universal covering of a topological space E if E is simply connected.

Theorem

The universal covering for any Riemann surface R is either $\mathbb C$, $\mathbb D$ or $\mathbb S^2$

Theorem

Every Riemann surface R is biholomorphic to a quotient S˜*/*Γ, where S is ˜ ^D*,* ^C*,* ^C^b and ^Γ is a group of automorphism of S which acts freely and ˜ properly discontinuously.

э

 Ω

 4 ロ } 4 \overline{m} } 4 \overline{m} } 4 \overline{m} }

A function f is called a **Bloch function** if it is holomorphic on D and

$$
\sup_{z\in\mathbb{D}}(1-|z|^2)|f'(z)|<+\infty.
$$
 (1)

We will denote B the family of all Bloch functions. It's called a **little Bloch** function if

$$
\lim_{|z|\to 1} (1-|z|^2)|f'(z)|=0.
$$
 (2)

 QQQ

A function f is called a **Bloch function** if it is holomorphic on D and

$$
\sup_{z\in\mathbb{D}}(1-|z|^2)|f'(z)|<+\infty.
$$
 (1)

We will denote β the family of all Bloch functions. It's called a **little Bloch** function if

$$
\lim_{|z|\to 1} (1-|z|^2)|f'(z)|=0.
$$
 (2)

Proposition

- \Diamond Every bounded function $f : \mathbb{D} \to \mathbb{C}$ is a Bloch function.
- \Diamond If $f \in \mathcal{B}$, then for all $z \in \mathbb{D}$

$$
|f(z)|\leq |f(0)|+M|\lambda(|z|)|
$$

where $\lambda(z) = \log(1-z)$ $\lambda(z) = \log(1-z)$ $\lambda(z) = \log(1-z)$ $\lambda(z) = \log(1-z)$ and $M = \sup_{z \in \mathbb{D}} (1 - |z|^2)|f'(z)|$ $M = \sup_{z \in \mathbb{D}} (1 - |z|^2)|f'(z)|$ [.](#page-26-0)

 \Diamond The set B equipped with the norm

$$
||f||_{\mathcal{B}} = |f(0)| + \sup_{z \in \mathbb{D}} (1 - |z|^2)|f'(z)|
$$

is a Banach space.

- \Diamond B is not separable.
- \Diamond Let $f \in \mathcal{B}$ and $\varphi : \mathbb{D} \to \mathbb{D}$ be a conformal mapping of $\mathbb D$ onto itself, then $h(z) = f(\varphi(z)) \in \mathcal{B}$.

 QQQ

A Dirichlet space D is the collection of all holomorphic function on D such that

$$
\iint_{\mathbb{D}} |f'(z)|^2 dxdy < \infty \text{ where } z = x + iy.
$$

It can equipped with the following norm:

$$
||f||_{\mathcal{D}} = \left(|f(0)|^2 + \iint_{\mathbb{D}} |f'(z)|^2 dxdy\right)^{1/2}
$$

 200

.

If $f(z) = \sum_{n=0}^{\infty} a_n z^n$ is holomorphic on \mathbb{D} , then

$$
\frac{1}{\pi}\iint_{\mathbb{D}}|f'(z)|^2dxdy=\sum_{n=1}^{\infty}n|a_n|^2.
$$

G.

 2990

 4 ロ } 4 \overline{m} } 4 \overline{m} } 4 \overline{m} }

If $f(z) = \sum_{n=0}^{\infty} a_n z^n$ is holomorphic on \mathbb{D} , then

$$
\frac{1}{\pi}\iint_{\mathbb{D}}|f'(z)|^2dxdy=\sum_{n=1}^{\infty}n|a_n|^2.
$$

Observations

A briefly properties about D spaces are mentioned in the following.

- \Diamond The D space is conformally equivalent.
- \Diamond The D space is a Banach space with the norm $\Vert \cdot \Vert_{\mathcal{D}}$.

 QQQ

For $p > 0$, let \mathcal{Q}_p denote the space of all holomorphic function satisfying

$$
\sup_{\alpha\in\mathbb{D}}\iint_{\mathbb{D}}|f'(z)|^2g(z,\alpha)^p dxdy<\infty,
$$
\n(3)

where $g(z, \alpha)$ is the Green's function with a logarithm singularity at α .

 200

For $p > 0$, let \mathcal{Q}_p denote the space of all holomorphic function satisfying

$$
\sup_{\alpha\in\mathbb{D}}\iint_{\mathbb{D}}|f'(z)|^2g(z,\alpha)^p dxdy<\infty,
$$
\n(3)

where $g(z, \alpha)$ is the Green's function with a logarithm singularity at α .

Definition

For $p > 0$, let $\mathcal{Q}_{p,0}$ denote the space of all holomorphic function satisfying

$$
\lim_{|\alpha| \to 1} \iint_{\mathbb{D}} |f'(z)|^2 g(z, \alpha)^p dxdy = 0, \tag{4}
$$

where $g(z, \alpha)$ is the Green's function with a logarithm singularity at α .

つへへ

Observations

We will view a briefly glance about \mathcal{Q}_p and $\mathcal{Q}_{p,0}$. In fact, how they relate with the previous spaces.

$$
\diamond\ \ \textit{For}\ p=0,\ \textit{it follows}\ \mathcal{Q}_p=\mathcal{D}.
$$

$$
\diamond\ \ \textit{For}\ p>1,\ \textit{it follows}\ \mathcal{Q}_p=\mathcal{B}.
$$

 \Diamond For $p > 1$, $\mathcal{Q}_{p,0} = \mathcal{B}_0$.

Theorem

Let $f : \mathbb{D} \to \mathbb{C}$ be a holomorphic function, then the following conditions are equivalent

\n- (i)
$$
f \in \mathcal{B}
$$
.
\n- (ii) $\{f\}_{\mathcal{Q}_p} < \infty$ for all $p > 1$.
\n- (iii) $\{f\}_{\mathcal{Q}_p} < \infty$ for some $p > 1$.
\n

Theorem

For
$$
0 < p < q < \infty
$$
, it holds $\mathcal{Q}_p \subset \mathcal{Q}_q$.

Let R be a Riemann surface. A real-valued function $h: R \to \mathbb{R}$ is harmonic at p belonging to R if there exists a coordinate disk (Δ, φ) containing ρ such that $h\circ \varphi^{-1}:{\mathbb D}\to {\mathbb R}$ is harmonic function. If h is harmonic at each $p \in R$, we say h is a **harmonic function** on R.

 QQQ

Let R be a Riemann surface. A real-valued function $h: R \to \mathbb{R}$ is harmonic at p belonging to R if there exists a coordinate disk (Δ, φ) containing ρ such that $h\circ \varphi^{-1}:{\mathbb D}\to {\mathbb R}$ is harmonic function. If h is harmonic at each $p \in R$, we say h is a **harmonic function** on R.

Definition

A continuous function $u : R \to [-\infty, \infty)$ is **subharmonic** if for every coordinate disk (Δ, φ) and $h : \overline{\Delta} \to \mathbb{R}$ is a harmonic function such that $u(p) \leq h(p)$ for all $p \in \partial \Delta$, then $u(p) \leq h(p)$ for all $p \in \Delta$.

Theorem (Maximum Principle)

Let u be a subharmonic function on a Riemann surface R. If u attains a maximum at $p \in R$, then u is a constant function.

æ

 Ω

イロト イ押ト イヨト イヨト

Observations

Let (Δ, φ) be a coordinate disk and u be a subharmonic function on R. By using the Poisson integral, we can solve the Dirichlet problem

$$
\begin{cases} \frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} = 0 & \text{in } \mathbb{D} \\ w = u \circ \varphi^{-1} & \text{on } \partial \mathbb{D}. \end{cases}
$$

Let $u \wedge : R \to \mathbb{R}$ by

$$
u_{\Delta}(p) = \begin{cases} u(p) & \text{if } p \notin \Delta \\ (w \circ \varphi)(p) & \text{if } p \in \Delta. \end{cases}
$$

Then u_Λ is continuous on R and harmonic on Δ .

 200

A **Perron family** on R is a collection F of subharmonic functions such that

- (i) If $u_1, u_2 \in \mathcal{F}$, then max $\{u_1, u_2\} \in \mathcal{F}$.
- (ii) If $u \in \mathcal{F}$, then $u_{\Delta} \in \mathcal{F}$.

 QQ

A **Perron family** on R is a collection F of subharmonic functions such that

(i) If
$$
u_1, u_2 \in \mathcal{F}
$$
, then $\max\{u_1, u_2\} \in \mathcal{F}$.

(ii) If $u \in \mathcal{F}$, then $u \wedge \in \mathcal{F}$.

Theorem

Let F be a Perron family on R. Then $u(p) = \sup\{v(p) | v \in F\}$ is either harmonic or $u(p) = +\infty$ for all $p \in R$.

 Ω

Fix a point $q \in R$ and let (Δ, φ) be a coordinate disk containing q such that $\varphi(q) = 0$. Let P be a family of subharmonic functions on $R \setminus \{q\}$ such that

- (i) Every $u \in \mathcal{P}_q$ has compact support.
- (ii) Every $u \in \mathcal{P}_q$ is such that $v(p) = u(p) + \log |\varphi(p)|$ is subharmonic on ∆.

Then, P_q is a Perron family on $R \setminus \{q\}$.

Definition

Suppose $\sup\{u(p):u\in\mathcal{P}_a\}<\infty$ for some $p\in R$. A **Green's function** for R with singularity at q is defined as $g(p,q) = \sup\{u(p) | u \in \mathcal{P}_q\}$ for all $p \in R \setminus \{q\}$.

 QQ

イロト イ何 トイヨト イヨト ニヨー

Let g(p*,* q) be a Green's function for R with a singularity at q. Then (i) $g(p,q) > 0$.

- (ii) $g(p,q)$ is harmonic for all $p \in R \setminus \{q\}$.
- (iii) If (Δ, φ) is a coordinate disk such that $\varphi(q) = 0$, then $h(p) = g(p,q) + \log |\varphi(p)|$ is harmonic on Δ .

Proposition

Let g(p*,* q) be a Green's function on R with a pole at q. Then

 $\inf_{p\in R} g(p,q) = 0.$

æ.

 Ω

.

Let g(p*,* q) be a Green's function for R with a singularity at q. Then (i) $g(p,q) > 0$.

- (ii) $g(p,q)$ is harmonic for all $p \in R \setminus \{q\}$.
- (iii) If (Δ, φ) is a coordinate disk such that $\varphi(q) = 0$, then $h(p) = g(p,q) + \log |\varphi(p)|$ is harmonic on Δ .

Proposition

Let g(p*,* q) be a Green's function on R with a pole at q. Then

 $\inf_{p\in R} g(p,q) = 0.$

Definition

Let R be a Riemann surface. Then, R is **hyperbolic** if it admits a Green's function.

 QQ

Let $0 < p < \infty$ and R be a hyperbolic Riemann surface. We say that a holomorphic function $f: R \to \mathbb{C}$ belongs to $\mathcal{Q}_p(R)$ if

$$
||f||_{\mathcal{Q}_{p}(R)}^{2}=\sup_{z_{0}\in R}\iint_{R}|f'(z)|^{2}(g_{R}(z,z_{0}))^{p}dz\wedge d\overline{z},
$$
\n(5)

Observations

.

In fact, let $R = \mathbb{D}$ be, we get the Bloch space. Moreover, we denote $\mathcal{Q}_0(R)$ and $\mathcal{Q}_1(R)$ by $\mathcal{D}(R)$ and $\mathcal{BMOA}(R)$ as the Dirichlet and BMOA spaces on R, respectively.

 Ω

Remark

Let L be the length of a closed curve and the area A of the planar region on \mathbb{R}^2 that it encloses, then

$$
4\pi A\leq L^2.
$$

Proposition

Let R be a Riemann surface, Ω ⊂ R a precompact domain and Γ = *∂*Ω piecewise smooth boundary. If $f: R \to \mathbb{C}$ is holomorphic, then the following isoperimetric inequality holds:

$$
4\pi|f(\Omega)|\leq |f(\Gamma)|^2
$$

where $|f(\Omega)|$ and $|f(\Gamma)|$ denote the area of $f(\Omega)$ as covering surface and the length of $f(\Gamma)$ respectively.

 200

Theorem

Let R be a hyperbolic Riemann surface and $g_R(z, z_0)$ be its Green's function with singularity at z_0 . For $t > 0$, let $R_t = \{z \in R \mid g_R(z, z_0) > t\}$. If $f : R \to \mathbb{C}$ is holomorphic, then the function

$$
A(t)=\iint_{R_t}|f'(z)|^2dz\wedge d\bar{z}
$$

has the following three properties:

(i) $A(t)$ is continuous and decreasing with increasing $t > 0$. (ii) $e^{2s}A(s) \leq e^{2t}A(t)$ for $s \geq t \geq 0$. (iii) For $p > 0$ and $t > 0$.

$$
\frac{i}{2}\iint_{R_t}|f'(z)|^2(g_R(z,z_0))^p dz\wedge d\overline{z}=\int_0^\infty A(s)ds^p=-\int_t^\infty s^p dA(S).
$$

The right-side integral will be understood under Riemann-Stieljes integration. Fernando Díaz (IPN, México) Q_p [Space on Riemann Surfaces](#page-0-0) June 1, 2018 34 / 43

Given a nonnegative function $A(t)$ on $(0,\infty)$ with the following two properties:

(i) $A(t)$ is continuous and decreasing with increasing $t > 0$. (ii) $e^{2t_2}A(t_2) \le e^{2t_1}A(t_1)$ when $t_2 \ge t_1 > 0$. For $p, t \geq 0$, let $B_p(t) = -\int_t^{\infty} s^p dA(s)$. If $p \geq q \geq 0$, then

$$
B_\rho(0)\leq \frac{2^q\Gamma(\rho+1)}{2^p\Gamma(q+1)}B_q(0).
$$

Furthermore,

$$
B_p(0)=\frac{2^q\Gamma(p+1)}{2^p\Gamma(q+1)}B_q(0)<\infty
$$

if and only if

$$
A(0) = \lim_{t \to 0} A(t) < \infty \quad \text{and} \quad A(t) = e^{-2t} A(0), \quad t > 0.
$$

Theorem

Let $0 \le q < p$ and R be a hyperbolic Riemann surface with $w \in R$. Then, (i) For any holomorphic $f: R \to \mathbb{C}$,

$$
\iint_R |f'(z)|^2 (g_R(z,w))^p dz \wedge d\overline{z}
$$

$$
\leq \left(\frac{2^q \Gamma(p+1)}{2^p \Gamma(q+1)}\right)^{1/2} \iint_R |f'(z)|^2 (g_R(z,w))^q dz \wedge d\overline{z}
$$

(ii) $Q_q(R) \subset Q_p(R)$ with

$$
||f||_{\mathcal{Q}_{\rho}(R)}^2 \leq \left(\frac{2^q \Gamma(p+1)}{2^p \Gamma(q+1)}\right) ||f||_{\mathcal{Q}_q(R)}^2, \quad f \in \mathcal{Q}_q(R).
$$

 Ω

э

Let $p : \mathbb{D} \to R$ be the universal covering mapping of a Riemann surface R and suppose $w_0, w_1 \in R$. We define the *hyperbolic distance* between w_0 and w_1 on R by

$$
\rho_R(w_0, w_1) := \inf \{ \rho_{\mathbb{D}}(z_0, z_1) \mid p(z_0) = w_0 \quad \text{and} \quad p(z_1) = w_1 \},
$$

where $\rho_{\mathbb{D}}(z_0, z_1)$ is defined [4.](#page-8-1) The density of ρ_R at the point w_1 is given by

$$
\lambda_R(w_1)=\inf\{\lambda_{\mathbb{D}}(z_1)\mid p(z_1)=w_1\}.
$$

Definition

Let R be a hyperbolic Riemann surface. We define the first type Bloch space on R as

$$
\mathcal{B}(R) := \left\{ F \in \mathcal{O}(R) \mid ||F||_{\mathcal{B}(R)} = \sup_{w \in R} \frac{|F'(w)|}{\lambda_R(w)} \right\} < \infty.
$$

Let R be a hyperbolic Riemann surface with Green's function $g_R(z, z_0)$, by using local coordinates in a neighborhood of $z₀$, we can define the Robin's constant by

$$
\gamma_R(z_0)=\lim_{z\to z_0}\left(g_R(z,z_0)-\log\frac{1}{|z-z_0|}\right).
$$

Let $c_R(z_0) = e^{-\gamma_R(z_0)}$ be the *capacity density* of R at z_0 .

Definition

Let R be a hyperbolic Riemann surface. We define the second type Bloch space on R as

$$
\mathcal{CB}(R) := \left\{ F \in \mathcal{O}(R) \mid ||F||_{\mathcal{CB}(R)} = \sup_{w \in R} \frac{|F'(w)|}{c_R(w)} < \infty \right\}.
$$

э

 200

∢ ロ ▶ - ∢ 母 ▶ - ∢ ヨ

Theorem

Let R be a hyperbolic Riemann surface, $Fuc(\mathbb{D})$ a Fuschian group such that $\mathbb{D}/\mathsf{Fuc}(\mathbb{D})$ is biholomophic to R, and Ω the fundamental domain of $Fuc(\mathbb{D})$. Then

(i) $CB(R) \subset B(R)$ i.e., there is a hyperbolic Riemann surface S such that

 $CB(S) \neq B(S)$.

 (ii) If

$$
\delta(R) := \inf_{w \in \Omega} \left\{ \prod_{\gamma \in \text{Fuc}(\mathbb{D})} |\sigma_w(\gamma(w))| \right\} > 0
$$

then

$$
CB(S)=B(S).
$$

Fernando Díaz (IPN, México) Q_p [Space on Riemann Surfaces](#page-0-0) June 1, 2018 39 / 43

э

 200

 4 ロ } 4 \overline{m} } 4 \overline{m} } 4 \overline{m} }

WHAT ELSE CAN I DO?

THANK YOU!

Fernando Díaz (IPN, México) Q_p [Space on Riemann Surfaces](#page-0-0) June 1, 2018 40 / 43

э

 Ω

イロト イ押ト イヨト イヨト

Main references I

Otto Forster.

Lectures on Riemann Surfaces, 1993.

State Jhon M, Lee,

Introduction to Topological Manifolds 2000.

SA Jhon M, Lee,

Introduction to Smooth Manifolds 2002.

Jie Xiao,

Geometric Q_p Functions, 2005.

N. Danikas

Some Banach spaces of analytic functions complex analysis 1999.

æ

 Ω

Main references II

J. Ristioja, R. Aulaskari, Y. He and R. Zhao Q_p on Riemann Surfaces Canad. J. Math. 1998.

Lars Ahlfors,

Conformal Invariant 2010.

J. B. Conway,

Functions of one complex variable, 1978.

R. Aulaskari and H. Chen Q_p norm and area inequality J. Funct. Anal, (221):1-24 2005.

B. Farb and D. Margalit,

A Primer on Mapping Class Groups, Princeton University Pres, 2012

 Ω

Main references III

SA Hershel Farkas and Irwin Kra

Riemann surfaces Springer-Verlag 1993

SA Thomas Ransford,

Potential Theorey in the Complex Plane, Cambridge university Press, 1995

Solut John Harper and Marvin Greenberg,

Algebraic Topology: a first course, Cummings Publishing Company, 1941

 Ω æ.