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Original Problem (MSE)

Figure: Relájate Relajación

If we take each square of an n ×m grid and
associate one of k colors with probability 1/k ,
what is the expected number of ”Tetris pieces”
we will see?

Figure: A 4-colored tiling element of T (4)
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An old friend

Figure: José L. Raḿırez (UNAL)
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Object: Polyominoes

Def. Polyomino

In Z× Z, a cell is a unitary square with integer
coordinates. A polyomino is a finite collection
of cells with connected interior joined edge to
edge.
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Tool: Generating Functions

Imagine you have a sequence of numbers i.e.,
Fn (The Fibonacci Numbers). You can
generate them one by one using
Fn = Fn−1 + Fn−2 and F0 = 0, F1 = 1. What
if there is a way to have them all at the same
time just available for you?

Generating Function

It is a symbolic sum
F (x) = F0 + F1x + F2x

2 + · · ·+ Fnx
n + · · ·

F (x) =
x

1− x − x2
.

Operations Mean!

F (x) =
x

1− x − x2
=

1√
5

(
1

1− φx
− 1

1− φ̄x

)

Fn =
φn − φ̄n

√
5
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Tool: Binomial Numbers

Binomial Numbers
(n
k

)
= n!

k!(n−k)!

(x + 1)n = xn + nxn−1 +

(
n

2

)
xn−2 · · ·+

(
n

n

)
xn−n

Eg:

(x + 1)3 =

(
3

0

)
x3 +

(
3

1

)
x2 +

(
3

2

)
x +

(
3

3

)
= x3 + 3x2 + 3x + 1.

They count ways to choose k elements out of n.
In how many ways can we express 5 as a sum of 3 integers? This is called Composition
5 = 1+1+1 + 1 + 1
5 = 1+1 + 1+1 + 1 (

5− 1

3− 1

)
=

(
4

2

)
= 6.
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Notation

T (k)
m,n denotes the set of possible k-colored

tilings in the m × n grid such that adjacent
polyominos have different colors.

If T is k-colored in T (k)
m,n , ρ(T ) is the number

of polyominos.

C
(k)
m (x , y) :=

∑
n≥1

xn
∑

T∈T (k)
m,n

yρ(T ). (1)

cm,k(n, i) will be the xny i coefficient of

C
(k)
m (x , y).

Figure: A 4-colored tiling element of T (4)
6,16.
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Average number of polyominoes

Let XTilm,k
(n) be a random variable that counts the number of polyominoes in a random

tiling k-colored in T (k)
m,n . The following happens

E[XTilm,k
(n)] =

1∣∣∣T (k)
m,n

∣∣∣
∑

T∈T (k)
m,n

ρ(T ) =

[xn] ∂C
(k)
m (x ,y)
∂y

∣∣∣∣
y=1

[xn]C
(k)
m (x , 1)

, (2)

where [xn]f (x) is the coefficient of xn in f (x).
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Who cares?

Figure: Hex game

Figure: Percolation method
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Hugo Cares

Figure: Hugo Duminil Copin. Fields Medal 2022
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Case m = 1

These are number compositions! c1,k(n, i) =
(n−1
i−1

)
k(k − 1)i−1, then

C
(k)
1 (x , y) = kxy

1−x+xy−kxy .

Theorem

The exp. value of polyomonoes in T (k)
1,n is

E[XTil1,k (n)] =
(k − 1)n + 1

k
.
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Case m = 2 (Original Problem)

Consider the following cases:

Let A(k)
2,n and B(k)

2,n the colored tilings in T (k)
2,n s.t last colum has one or two colors. Then

A
(k)
2 (x , y) :=

∑
n≥1

xn
∑

T∈A(k)
2,n

yρ(T ) and B
(k)
2 (x , y) :=

∑
n≥1

xn
∑

T∈B(k)
2,n

yρ(T ).

This means that C
(k)
2 (x , y) = A

(k)
2 (x , y) + B

(k)
2 (x , y).
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Case m = 2 (Original Problem)

(1) (2)

(3) (4)

Figure: Decomposition of the colored tilings in A(k)
2,n.

From this decomposition we get that

A
(k)
2 (x , y) = kxy + xA

(k)
2 (x , y)︸ ︷︷ ︸
(1)

+(k − 1)xyA
(k)
2 (x , y)︸ ︷︷ ︸

(2)

+2xB
(k)
2 (x , y)︸ ︷︷ ︸
(3)

+(k − 2)xyB
(k)
2 (x , y)︸ ︷︷ ︸

(4)

,
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Case m = 2 (Original Problem)

B
(k)
2 (x , y) = k(k − 1)xy2 + 2(k − 1)xyA

(k)
2 (x , y)︸ ︷︷ ︸

(1)

+2

(
k − 1

2

)
xy2A

(k)
2 (x , y)︸ ︷︷ ︸

(2)

+ xB
(k)
2 (x , y)︸ ︷︷ ︸
(3)

+2(k − 2)xyB
(k)
2 (x , y)︸ ︷︷ ︸

(4)

+2

(
k − 2

2

)
xy2B

(k)
2 (x , y)︸ ︷︷ ︸

(5)

+2

(
k − 2

1

)
xy2B

(k)
2 (x , y)︸ ︷︷ ︸

(6)

+ xy2B
(k)
2 (x , y)︸ ︷︷ ︸
(7)

.

(1) (2)

(3) (4)

(5)

(7)

(6)

Figure: Decomposition of the colored tilings in B(k)
2,n.
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Case m = 2 (Original Problem)

Theorem

The bivariate generating function C
(k)
2 (x , y) is given by

kxy(1 + (k − 1)y − x(1− y)(1− ky))

1− x (2 + (3k − 5)y + (k2 − 3k + 3) y2) + x2(1− y) (1− (k2 + 1)y2 − ky (1− 2y))
.

Furthermore, [xn]C
(k)
2 (x , 1) = k2n.

Corollary

E[XTil2,k (n)] =
2k3n + k2(2− 3n) + n − 1

k3
.
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Case m = 3

Fundamental change

Now polyominoes can have holes!

Figure: The 5 possible last columns of a configuration of size 3× n.
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Case m = 3

Theorem

The bivariate generating function C
(2)
3 (x , y) is given by the quotient

p(x , y)/q(x , y), where

p(x , y) = 2xy
((
y5 − 3y4 + 7y2 − 7y + 2

)
x3 −

(
4y5 − 6y4 − y3 + 10y2 − 12y + 5

)
x2

+
(
3y4 − y3 + y2 − 3y + 4

)
x − (y + 1)2

)
and

q(x , y) =
(
2y5 − 7y4 + 5y3 + 5y2 − 7y + 2

)
x4 −

(
y6 + 3y5 − 7y4 + 4y3 + 5y2 − 13y + 7

)
x3

+
(
y5 + 2y4 + 3y3 − y2 − 6y + 9

)
x2 −

(
y3 + y2 + 2y + 5

)
x + 1.

Corollary

E
[
XTil3,2(n)

]
=

1183n + 1945 + 1/8n−2

1568
.
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Case m = 3 (number of fillings)

Prop.

The expected value for the number of fillings is

(7n − 15) + 1
8n−2

1568
.

Figure: All possible configurations for tilings in T (2)
3,4 with exactly one filling.
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General case

Question

Can we keep doing this?

Better question

How much do we have to suffer to get a system for m = 4, 5, · · · ? Notice that the size of the
linear system is given by the possible last columns.

Even better question

How big of a computer do we need? or can I count the number of possible columns? How do
we do this?

25 / 48



General case

Question

Can we keep doing this?

Better question

How much do we have to suffer to get a system for m = 4, 5, · · · ? Notice that the size of the
linear system is given by the possible last columns.

Even better question

How big of a computer do we need? or can I count the number of possible columns? How do
we do this?

26 / 48



General case

Question

Can we keep doing this?

Better question

How much do we have to suffer to get a system for m = 4, 5, · · · ? Notice that the size of the
linear system is given by the possible last columns.

Even better question

How big of a computer do we need? or can I count the number of possible columns? How do
we do this?

27 / 48



Number of last columns (k = 2)

Idea

Let’s do it for just two colors. Consider the column as a vector of 0′s and 1′s.

(c1, c2, c3, · · · , cm) ∈ {0, 1}m,

If ci = ci+1, then they belong to the same polyomino! Consider

(d1, d2, d3, · · · , dℓ) ∈ {0, 1}ℓ,

s.t ℓ ≤ m, and di ̸= di+i . Two options

(0, 1, 0, 1, · · · , 0, 1),

(1, 0, 1, 0, · · · , 1, 0).

Considering the other dimension, these points may be in the same polyomino!
28 / 48



Number of last columns (k = 2)

Idea

Let’s do it for just two colors. Consider the column as a vector of 0′s and 1′s.

(c1, c2, c3, · · · , cm) ∈ {0, 1}m,

If ci = ci+1, then they belong to the same polyomino! Consider

(d1, d2, d3, · · · , dℓ) ∈ {0, 1}ℓ,

s.t ℓ ≤ m, and di ̸= di+i . Two options

(0, 1, 0, 1, · · · , 0, 1),

(1, 0, 1, 0, · · · , 1, 0).

Considering the other dimension, these points may be in the same polyomino!
29 / 48



Other old friends

Idea

These points are joint by a wire if they belong to the same polyomino.

ff1; 3g; f2g; f4; 7; 9g; f5; 6g; f8gg

Figure: The wire diagram of a set partition.

Bell numbers

The number of set partitions of a set with n elements is given by the n-th Bell number

Bn+1 =
n∑

k=0

(
n

k

)
Bk .

Bn = 1, 1, 2, 5, 15, 52, 203, 877, 4140, · · ·
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They are not all partitions

The wires cant cross!

Notice that we cant have the following scenario

Non-crossing partitions

The number of non-crossing partitions is given by the n-th Catalan number

Cn =
n∑

k=0

Ck−1Cn−k =
1

n + 1

(
2n

n

)
.
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Parity Condition

Notice we cant pair di with dj if i ̸≡ j (mod 2), because they have different colors!

Lemma

Let NC (n)0 be the number of non-crossing partitions on n elements and that have the parity
condition, then

|NC (n)0| =
1

2⌊n/2⌋+ 1

(
n + ⌊n/2⌋
⌈n/2⌉

)
.

Fact of life

If we drop the non-crossing partition the number of such partitions is B⌊n/2⌋ · B⌈n/2⌉.
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Number of columns with two colors

Theorem

The number of different columns

Colm,2 = 2
m∑
ℓ=1

1

2⌊ℓ/2⌋+ 1

(
m − 1

ℓ− 1

)(
ℓ+ ⌊ℓ/2⌋
⌈ℓ/2⌉

)
= 0, 2, 4, 10, 26, 72, 206, 608, 1834, 5636, . . .

Corollary

Colm,2 ∼ c ·
(
1 + 3

2

√
3
)m

m3/2
,

where c ≈ 1.75213.
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Experimentation

k\n 3 4 5 6 7 8 9 10

2 0.756 0.889 1.015 1.147 1.280 1.410 1.544 1.671
3 1.409 1.778 2.150 2.521 2.889 3.257 3.629 4.000
4 1.779 2.299 2.815 3.329 3.836 4.357 4.874 5.382

Table: This contains values mn,k s.t E
[
XTiln,k (x)

]
∼ mn,k · (x − 1) + (k−1)n+1

k
.

Figure: simulation of 1
100

E
[
XTil10,k (10)

]
for k in [100]

Figure: In blue E
[
XTiln,2(x)

]
and in red

mn,2(x − 1) + (n + 1)/2
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So.. where are the graphs?

Figure: A tiling of the grid Figure: A partition of its graph

Notice that the grid is Pm × Pn.
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Take any family of graphs that you like

Theorem

The number of k-colored partitions of size i for
the complete graph Kn, for n ≥ 1, is given by

gk(n, i) =

{
n

i

}(
k

i

)
i !.

Corollary

E [XTilk (Kn)] = k − (k − 1)n

kn−1
.
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Consider Gm × Pn

Approach:

1. Create a bivariate generating function.

T
(k)
m (x , y) =

∑
n≥1

xn
∑

T∈T (k)(U
(m)
n )

yρ(T ).

2. Slice them and create a system of equations on them.

3. What’s the size of the system?

4. Do some coding!

5. If the system is too big, use the symmetry of the graph and the colors!

6. Experiment and hope for the best.
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TA(x , y) = xy |supp(A)| + x
∑

B∈Cm,k
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Consider Gℓ × Pn

Theorem

The expected size of a k-colored partition on the graph Kℓ × Pn when you color uniformly and
independently each vertex is given by

E[XTilk (Kℓ × Pn)] =
kℓn−(2ℓ−1)

((
k2ℓ − (k2 − 1)ℓ

)
+ (k − 1)ℓ

(
(k + 1)ℓ − kℓ

)
n
)

kℓn
.

Figure: A 3-colored partition of size 4 of K5 × P4.
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Thanks!

References:

1. Colored random tilings on grids, J. L. Raḿırez and D.V. J. Autom. Lang. Comb. (2024).
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Figure: SAGE experiments.

Questions

1. What is your favorite family of graphs?
We have considered

1.1 Trees
1.2 Cycle graphs
1.3 Complete Bipartite graphs
1.4 Tadpole graphs (Undergraduate thesis

Santiago Garcia, exp 2025).

2. Can we limit the size of the polyominos?

3. What is the prob. that a tile goes from
first to last layer? 48 / 48


