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Sacred number

L +
3,3

S3 : =
{

w | w : [3] 1:1−−→ [3]
}

=
{

123 213 132
231 312 321

}
.

w1w2 · · · wn is 312-avoiding if
there are not i , j , k such that
wi > wk > wj and i < j < k.{

123 213 132
231 321

}
:= S312

3 .

|S312
3 | = 1

3+1
(2·3

3
)

= | L +
3,3 |⇝ S312

n L +
n,n

?
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Bandlow-Killpatrick (2001)
(Sn, S) is a Coxeter system where S = {s1, ..., sn−1} and si = (i i + 1).

Every w in Sn can be written as product of the si ’s.
If w = si1 · · · siℓ and ℓ is minimal among all such expressions, then
ℓ := ℓ(w) is said to be the length of w , and the expression si1 · · · siℓ

is called a reduced decomposition for w .
▶ Red(321) = {s1s2s1, s2s1s2}

Let w = w1w2 · · · wn be in S312
n .

(1) Let x denote n. Find the index i1 ∈ [n] such that wi1 = x . If i1 = x ,
then move to the next step. If i1 ̸= x , then move the next step after
computing the one-line expression for wsi1si1+1 · · · sn−1.

(2) Redefine w and x by setting w := wsi1si1+1 · · · sn−1 and x := n − 1.
(3) If w is the identity, then stop the process. Hence, the expression

sn−1sn−2 · · · si1 is a reduced word for w
▶ Otherwise, start over.
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Example
Let w = w1w2w3w4w5w6w7w8 = 21654873 be in S312

8 .

ws6s7 = 21654738
21654738s6 = 21654378

21654378s3s4s5 = 21543678
21543678s3s4 = 21435678

21435678s3 = 21345678
21345678s1 = 12345678.

(s6s7|s6|s3s4s5|s3s4|s3|∅|s1)−1︸ ︷︷ ︸
Red(w)

s1

s3

s3 s4

s3 s4 s5

s6

s6 s7

S312
n L +

n,n

ψ

ϕ

; ℓ(w) area(ψ(w)) := π
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A little bit of abstractness

Let G be a complex connected reductive algebraic group. A normal
G-variety Y is called a spherical variety if it contains a dense orbit of
some Borel subgroup B ⊆ G.

Theorem (Brion, Vinberg-1986)
Y is spherical if the codimension of a general B-orbit is zero. The
codimension cB(Y) is called the complexity .

Ubiquitous examples:
▶ Toric varieties
▶ Wonderful varieties
▶ Symmetric spaces

8 / 21



A little bit of abstractness

Let G be a complex connected reductive algebraic group. A normal
G-variety Y is called a spherical variety if it contains a dense orbit of
some Borel subgroup B ⊆ G.

Theorem (Brion, Vinberg-1986)
Y is spherical if the codimension of a general B-orbit is zero. The
codimension cB(Y) is called the complexity .

Ubiquitous examples:
▶ Toric varieties
▶ Wonderful varieties
▶ Symmetric spaces

8 / 21



A little bit of abstractness

Let G be a complex connected reductive algebraic group. A normal
G-variety Y is called a spherical variety if it contains a dense orbit of
some Borel subgroup B ⊆ G.

Theorem (Brion, Vinberg-1986)
Y is spherical if the codimension of a general B-orbit is zero. The
codimension cB(Y) is called the complexity .

Ubiquitous examples:
▶ Toric varieties
▶ Wonderful varieties
▶ Symmetric spaces

8 / 21



A little more ...

Let G = GLn, B, and T be the general linear group over C, the
subgroup of upper triangular matrices, and the diagonal matrices in B
respectively.

G /B =
⊔

w∈Sn

B w B /B, Sn ∼= NG(T)/T .

A Schubert variety Xw B associated with w is the closure of a
B-orbit B w B /B in G /B.

▶ The codimension of a general T-orbit in Xw B, denoted cT(Xw B), is
called the torus complexity of Xw B.

If cT(Xw B) = 1, under what conditions Xw B is spherical with respect to
some reductive group action?
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More combinatorial tools

Let SI be the parabolic subgroup of Sn generated by I ⊆ S and w0(I) its
longest element.

A standard Coxeter element c ∈ SI is any product of the elements
of I listed in some order.
Denote J(w) := {s ∈ S : ℓ(sw) < ℓ(w)} the left descent set of
w = w1w2 · · · wn.

Remark
The biggest reductive group subgroup of GLn that acts on Xw B is the
Levi subgroup L(w) of StabG(XwB) := P(w).

Hence, we have a Borel subgroup BL ⊃ T of L acting on Xw B. We head
towards under what conditions cBL(Xw B) = 0?
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Bruhat Order and Pattern Avoidance
The Bruhat–Chevalley order (Sn,≤) is defined by

v ≤ w ⇐⇒ Xv B ⊆ Xw B, ℓ(w) = dim Xw B.

For w ∈ Sn and p ∈ Sk with k ≤ n. w contains the pattern p if
there exits a sequence 1 ≤ i1 < · · · < ik ≤ n such that w(i1) · · · w(ik)
is in the same relative order as p(1) · · · p(k). If w does not contain p,
then w is said to avoid p .

We call Xw B a partition Schubert variety (Ding’s Schubert variety)
if w is a 312-avoiding permutation. Let us denote S312

n this family.
▶ S312

n is a smooth family.

Theorem (Lakshmibai, Sandhya-1990)
The variety Xw B is smooth ⇐⇒ w avoids the patterns 3412 and 4231.
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e

s3 s2 s1

s3s2
s2s3

s1s2
s2s1

s1s2

s2s3s2 s3s2s1 s1s3s2 s2s1s3 s1s2s3 s1s2s1

s2s3s2s1
s3s1s2s1

s2s1s3s2
s1s2s3s2

s1s2s1s3

s2s3s1s2s1 s1s2s3s2s1 s2s1s2s3s2

w0

Bruhat order for S4.
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Classification
Theorem (Lee, Masuda, Park-2021)

cT(Xw B) = 1 and smooth ⇐⇒ w contains the pattern 321 exactly
once and avoids 3412 ⇐⇒ there exists a reduced word of w
containing sisi+1si as a factor and no other repetitions.
cT(Xw B) = 1 and singular ⇐⇒ w contains the pattern 3412 exactly
once and avoids the pattern 321.

Theorem (Gao, Hodges, Yong-2022)
cBL(Xw B) = 0 ⇐⇒ w0(J(w))w is a Coxeter element of SJ(w)

Theorem (Gaetz-2022)
cBL(Xw B) = 0 ⇐⇒ w avoids the following 21 patterns

P :=


24531 25314 25341 34512 34521 35412 35421
42531 45123 45213 45231 45312 52314 52341
53124 53142 53412 53421 54123 54213 54231


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First result K

Theorem (Can-D.)
(i) Let Dw ⊂ GLn /B be a partition Schubert variety such that

cT(Dw ) = 1. Then Dw is a spherical L-variety, where L is a Levi
factor of the stabilizer of Dw in GLn.

▶ NT312
n := {w ∈ S312

n : cT(Xw B) = 1 and cBL(Xw B) = 0}

(ii) All singular Schubert varieties of T-complexity one are spherical.

Example
In the flag GL5(C)/B5(C), w is an element of

NT312
5 =

{
12543 13542 14325 14352 21543 23541
24315 24351 32145 32154 32415 32451

}

What’s the cardinality of NT312
n ?
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Second result K

Theorem (Can-D.)
Let π ∈ L +

n,n and w = w1w2 · · · wn be such that ϕ(π) = w for n ≥ 4.
Then w has a unique 321 if and only if π has a unique peak at the second
diagonal and no other peaks at the r -th diagonal for r ≥ 3.

Corollary (Can-D.)
If n ≥ 4, the cardinality of NT312

n is given by 2n−3(n − 2).
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Dyck paths of NT312
5 .
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Final result: new characterization
Theorem (Can-D.)
Let w be in S312

n . Let π denote the Dyck path of size n corresponding to
w. Then Xw B is a spherical Schubert variety if and only if one of the
following conditions holds:

(1) π(2) = ∅, or
(2) every connected component M of π(2) is either an elbow, dimple, or

ledge as depicted below

Elbow Dimple Ledge
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Thank You/Gracias/Obrigado

https://arxiv.org/abs/2212.01234

“Stones on the road? I save every single one, and one day
I’ll build a castle.” Fernando Pessoa.
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