Dyck paths and nearly toric Schubert varieties

Néstor F. Díaz Morera Written jointly with Mahir B. Can

Tulane University

JMM, AMS Combinatorics IV Boston, USA January 7, 2023

Outline

 $\mathscr{L}^+_{3,3}$

$$\mathfrak{S}_3 := \left\{ w \mid w : [3] \xrightarrow{1:1} [3] \right\}$$
$$= \left\{ \begin{aligned} 123 & 213 & 132 \\ 231 & 312 & 321 \end{aligned} \right\}.$$

 $\mathscr{L}^+_{3,3}$

3 / 21

 $\mathscr{L}^+_{3,3}$

$$\mathfrak{S}_{3} := \left\{ w \mid w : [3] \xrightarrow{1:1} [3] \right\}$$
$$= \left\{ \begin{aligned} 123 & 213 & 132 \\ 231 & 312 & 321 \end{aligned} \right\}.$$

• $w_1 w_2 \cdots w_n$ is 312-avoiding if there are not i, j, k such that $w_i > w_k > w_j$ and i < j < k.

 $\mathscr{L}^+_{3,3}$

$$\mathfrak{S}_3 := \left\{ w \mid w : [3] \xrightarrow{1:1} [3] \right\} \\ = \left\{ \begin{aligned} 123 & 213 & 132 \\ 231 & 312 & 321 \end{aligned} \right\}.$$

• $w_1 w_2 \cdots w_n$ is 312-avoiding if there are not i, j, k such that $w_i > w_k > w_j$ and i < j < k.

$$\begin{cases} 123 & 213 & 132 \\ 231 & & 321 \end{cases} := \mathfrak{S}_3^{312}.$$

 $\mathscr{L}^+_{\mathbf{3},\mathbf{3}}$

$$|\mathfrak{S}_{3}^{312}| = \frac{1}{3+1} \binom{2 \cdot 3}{3} = |\mathscr{L}_{3,3}^{+}|$$

$$\mathfrak{S}_{3} := \left\{ w \mid w : [3] \xrightarrow{1:1} [3] \right\}$$
$$= \left\{ \begin{aligned} 123 & 213 & 132 \\ 231 & 312 & 321 \end{aligned} \right\}.$$

• $w_1 w_2 \cdots w_n$ is 312-avoiding if there are not i, j, k such that $w_i > w_k > w_j$ and i < j < k.

$$\begin{cases} 123 & 213 & 132 \\ 231 & & 321 \end{cases} := \mathfrak{S}_3^{312}.$$

 $\mathscr{L}^+_{3,3}$

 $\mathfrak{S}_3 := \left\{ w \mid w : [3] \xrightarrow{1:1} [3] \right\}$ $= \begin{cases} 123 & 213 & 132 \\ 231 & 312 & 321 \end{cases}.$

• $w_1 w_2 \cdots w_n$ is 312-avoiding if there are not i, j, k such that $w_i > w_k > w_j$ and i < j < k.

$$\begin{cases} 123 & 213 & 132 \\ 231 & & 321 \end{cases} := \mathfrak{S}_3^{312}.$$

 $|\mathfrak{S}_{3}^{312}| = \frac{1}{3+1} \binom{2 \cdot 3}{3} = |\mathscr{L}_{3,3}^{+}| \rightsquigarrow \mathfrak{S}_{n}^{312} \xrightarrow{?} \mathscr{L}_{n,n}^{+}$

Outline

Bandlow-Killpatrick (2001) -

 (\mathfrak{S}_n, S) is a Coxeter system where $S = \{s_1, ..., s_{n-1}\}$ and $s_i = (i \quad i+1)$.

- Every w in \mathfrak{S}_n can be written as product of the s_i 's.
- If $w = s_{i_1} \cdots s_{i_\ell}$ and ℓ is minimal among all such expressions, then $\ell := \ell(w)$ is said to be the length of w, and the expression $s_{i_1} \cdots s_{i_\ell}$ is called a reduced decomposition for w.

•
$$\operatorname{Red}(321) = \{s_1s_2s_1, s_2s_1s_2\}$$

Bandlow-Killpatrick (2001) -

 (\mathfrak{S}_n, S) is a Coxeter system where $S = \{s_1, ..., s_{n-1}\}$ and $s_i = (i \quad i+1)$.

- Every w in \mathfrak{S}_n can be written as product of the s_i 's.
- If $w = s_{i_1} \cdots s_{i_\ell}$ and ℓ is minimal among all such expressions, then $\ell := \ell(w)$ is said to be the length of w, and the expression $s_{i_1} \cdots s_{i_\ell}$ is called a reduced decomposition for w.
 - $\operatorname{Red}(321) = \{s_1s_2s_1, s_2s_1s_2\}$

Let $w = w_1 w_2 \cdots w_n$ be in \mathfrak{S}_n^{312} .

- (1) Let x denote n. Find the index $i_1 \in [n]$ such that $w_{i_1} = x$. If $i_1 = x$, then move to the next step. If $i_1 \neq x$, then move the next step after computing the one-line expression for $ws_{i_1}s_{i_1+1}\cdots s_{n-1}$.
- (2) Redefine w and x by setting $w := ws_{i_1}s_{i_1+1}\cdots s_{n-1}$ and x := n-1.
- (3) If w is the identity, then stop the process. Hence, the expression $s_{n-1}s_{n-2}\cdots s_{i_1}$ is a reduced word for w
 - Otherwise, start over.

Example ອ

Let $w = w_1 w_2 w_3 w_4 w_5 w_6 w_7 w_8 = 21654$ **8**73 be in \mathfrak{S}_8^{312} .

Let $w = w_1 w_2 w_3 w_4 w_5 w_6 w_7 w_8 = 21654$ **8**73 be in \mathfrak{S}_8^{312} .

- *ws*₆*s*₇ = 2165473**8**
- 21654**7**38*s*₆ = 216543**7**8
- 21**6**54378*s*₃*s*₄*s*₅ = 21543**6**78
 - 21**5**43678*s*₃*s*₄ = 2143**5**678
 - 21**4**35678*s*₃ = 213**4**5678
 - $21345678s_1 = 12345678.$

Let $w = w_1 w_2 w_3 w_4 w_5 w_6 w_7 w_8 = 21654$ **8**73 be in \mathfrak{S}_8^{312} .

- $w_{s_6s_7} = 21654738$
- 21654**7**38*s*₆ = 216543**7**8
- 21**6**54378*s*₃*s*₄*s*₅ = 21543**6**78
 - 21**5**43678*s*₃*s*₄ = 2143**5**678
 - 21**4**35678*s*₃ = 213**4**5678
 - $21345678s_1 = 12345678.$

$$\underbrace{\frac{(s_{6}s_{7}|s_{6}|s_{3}s_{4}s_{5}|s_{3}s_{4}|s_{3}|\emptyset|s_{1})^{-1}}_{\text{Red}(w)}}_{\text{Red}(w)}$$

Let $w = w_1 w_2 w_3 w_4 w_5 w_6 w_7 w_8 = 21654$ **8**73 be in \mathfrak{S}_8^{312} .

					<i>s</i> 6	S 7	
					<i>s</i> 6		
		<i>s</i> 3	<i>S</i> 4	<i>S</i> 5			
		<i>s</i> 3	<i>s</i> 4	1			
		<i>s</i> 3	1				
		1					
<i>s</i> ₁	1						
1							

 $w_{s_6s_7} = 21654738$

21654**7**38*s*₆ = 216543**7**8

21**6**54378*s*₃*s*₄*s*₅ = 21543**6**78

- 21**5**43678*s*₃*s*₄ = 2143**5**678
 - 21**4**35678*s*₃ = 213**4**5678

 $21345678s_1 = 12345678.$

$$\underbrace{\frac{(s_{6}s_{7}|s_{6}|s_{3}s_{4}s_{5}|s_{3}s_{4}|s_{3}|\emptyset|s_{1})^{-1}}_{\text{Red}(w)}}_{\text{Red}(w)}$$

Let $w = w_1 w_2 w_3 w_4 w_5 w_6 w_7 w_8 = 21654$ **8**73 be in \mathfrak{S}_8^{312} .

 $w_{s_6s_7} = 21654738$

21654**7**38*s*₆ = 216543**7**8

21**6**54378*s*₃*s*₄*s*₅ = 21543**6**78

21**5**43678*s*₃*s*₄ = 2143**5**678

21**4**35678*s*₃ = 213**4**5678

 $21345678s_1 = 12345678.$

$$\underbrace{\underbrace{(s_6 s_7 | s_6 | s_3 s_4 s_5 | s_3 s_4 | s_3 | \emptyset | s_1)^{-1}}_{\operatorname{Red}(w)}}_{\mathfrak{S}_n^{312} \xrightarrow{\psi}_{\phi}} \mathscr{L}_{n,n}^+; \ \ell(w) \longmapsto \operatorname{area}(\psi(w)) := \pi$$

Outline

A little bit of abstractness 🍧

• Let **G** be a complex connected reductive algebraic group. A normal **G**-variety **Y** is called a spherical variety if it contains a dense orbit of some Borel subgroup $\mathbf{B} \subseteq \mathbf{G}$.

A little bit of abstractness 🍧

• Let **G** be a complex connected reductive algebraic group. A normal **G**-variety **Y** is called a spherical variety if it contains a dense orbit of some Borel subgroup $\mathbf{B} \subseteq \mathbf{G}$.

Theorem (Brion, Vinberg-1986)

Y is spherical if the codimension of a general **B**-orbit is zero. The codimension $c_B(\mathbf{Y})$ is called the complexity.

A little bit of abstractness 🖤

• Let **G** be a complex connected reductive algebraic group. A normal **G**-variety **Y** is called a spherical variety if it contains a dense orbit of some Borel subgroup $\mathbf{B} \subseteq \mathbf{G}$.

Theorem (Brion, Vinberg-1986)

Y is spherical if the codimension of a general **B**-orbit is zero. The codimension $c_B(\mathbf{Y})$ is called the complexity.

- Ubiquitous examples:
 - Toric varieties
 - Wonderful varieties
 - Symmetric spaces

A little more ♥...

 Let G = GL_n, B, and T be the general linear group over C, the subgroup of upper triangular matrices, and the diagonal matrices in B respectively.

$$\mathbf{G} / \mathbf{B} = \bigsqcup_{w \in \mathfrak{S}_n} \mathbf{B} w \mathbf{B} / \mathbf{B}, \qquad \mathfrak{S}_n \cong \operatorname{N}_{\mathbf{G}}(\mathbf{T}) / \mathbf{T}.$$

A little more ♥...

• Let $\mathbf{G} = \operatorname{GL}_n$, \mathbf{B} , and \mathbf{T} be the general linear group over \mathbb{C} , the subgroup of upper triangular matrices, and the diagonal matrices in \mathbf{B} respectively.

$$\mathbf{G} / \mathbf{B} = \bigsqcup_{w \in \mathfrak{S}_n} \mathbf{B} w \mathbf{B} / \mathbf{B}, \qquad \mathfrak{S}_n \cong \operatorname{N}_{\mathbf{G}}(\mathbf{T}) / \mathbf{T}.$$

- A Schubert variety $X_{w B}$ associated with w is the closure of a **B**-orbit **B** w **B** / **B** in **G** / **B**.
 - ► The codimension of a general **T**-orbit in X_{wB} , denoted $c_T(X_{wB})$, is called the torus complexity of X_{wB} .

A little more ♥...

• Let $\mathbf{G} = \operatorname{GL}_n$, \mathbf{B} , and \mathbf{T} be the general linear group over \mathbb{C} , the subgroup of upper triangular matrices, and the diagonal matrices in \mathbf{B} respectively.

$$\mathbf{G} / \mathbf{B} = \bigsqcup_{w \in \mathfrak{S}_n} \mathbf{B} w \mathbf{B} / \mathbf{B}, \qquad \mathfrak{S}_n \cong \mathrm{N}_{\mathbf{G}}(\mathbf{T}) / \mathbf{T}.$$

- A Schubert variety $X_{w B}$ associated with w is the closure of a **B**-orbit **B** w **B** / **B** in **G** / **B**.
 - ► The codimension of a general **T**-orbit in X_{wB} , denoted $c_T(X_{wB})$, is called the torus complexity of X_{wB} .

If $c_{\mathbf{T}}(X_{w\mathbf{B}}) = 1$, under what conditions $X_{w\mathbf{B}}$ is spherical with respect to some reductive group action?

Outline

More combinatorial tools —

Let \mathfrak{S}_I be the parabolic subgroup of \mathfrak{S}_n generated by $I \subseteq S$ and $w_0(I)$ its *longest element*.

Let \mathfrak{S}_I be the parabolic subgroup of \mathfrak{S}_n generated by $I \subseteq S$ and $w_0(I)$ its *longest element*.

A standard Coxeter element c ∈ 𝔅_I is any product of the elements of I listed in some order.

Let \mathfrak{S}_I be the parabolic subgroup of \mathfrak{S}_n generated by $I \subseteq S$ and $w_0(I)$ its *longest element*.

- A standard Coxeter element c ∈ 𝔅_I is any product of the elements of I listed in some order.
- Denote $J(w) := \{s \in S : \ell(sw) < \ell(w)\}$ the left descent set of $w = w_1 w_2 \cdots w_n$.

Let \mathfrak{S}_I be the parabolic subgroup of \mathfrak{S}_n generated by $I \subseteq S$ and $w_0(I)$ its *longest element*.

- A standard Coxeter element c ∈ 𝔅_I is any product of the elements of I listed in some order.
- Denote $J(w) := \{s \in S : \ell(sw) < \ell(w)\}$ the left descent set of $w = w_1 w_2 \cdots w_n$.

Remark

The biggest reductive group subgroup of GL_n that acts on X_{wB} is the Levi subgroup L(w) of $Stab_G(X_{wB}) := P(w)$.

More combinatorial tools —

Let \mathfrak{S}_I be the parabolic subgroup of \mathfrak{S}_n generated by $I \subseteq S$ and $w_0(I)$ its *longest element*.

- A standard Coxeter element c ∈ 𝔅_I is any product of the elements of I listed in some order.
- Denote $J(w) := \{s \in S : \ell(sw) < \ell(w)\}$ the left descent set of $w = w_1 w_2 \cdots w_n$.

Remark

The biggest reductive group subgroup of GL_n that acts on X_{wB} is the Levi subgroup L(w) of $Stab_G(X_{wB}) := P(w)$.

Hence, we have a Borel subgroup $\mathbf{B}_{\mathbf{L}} \supset \mathbf{T}$ of \mathbf{L} acting on $X_{w \mathbf{B}}$. We head towards *under what conditions* $c_{\mathbf{B}_{\mathbf{L}}}(X_{w \mathbf{B}}) = 0$?

Bruhat Order and Pattern Avoidance 😁

• The Bruhat–Chevalley order (\mathfrak{S}_n, \leq) is defined by

$$v \leq w \iff X_{v \mathbf{B}} \subseteq X_{w \mathbf{B}}, \qquad \ell(w) = \dim X_{w \mathbf{B}}.$$

Bruhat Order and Pattern Avoidance 😁

• The Bruhat–Chevalley order (\mathfrak{S}_n, \leq) is defined by

$$v \leq w \iff X_{v \mathbf{B}} \subseteq X_{w \mathbf{B}}, \qquad \ell(w) = \dim X_{w \mathbf{B}}.$$

For w ∈ 𝔅_n and p ∈ 𝔅_k with k ≤ n. w contains the pattern p if there exits a sequence 1 ≤ i₁ < ··· < i_k ≤ n such that w(i₁) ··· w(i_k) is in the same relative order as p(1) ··· p(k). If w does not contain p, then w is said to avoid p.

Bruhat Order and Pattern Avoidance 🗢

• The Bruhat–Chevalley order (\mathfrak{S}_n, \leq) is defined by

$$v \leq w \iff X_{v \mathbf{B}} \subseteq X_{w \mathbf{B}}, \qquad \ell(w) = \dim X_{w \mathbf{B}}.$$

- For w ∈ 𝔅_n and p ∈ 𝔅_k with k ≤ n. w contains the pattern p if there exits a sequence 1 ≤ i₁ < ··· < i_k ≤ n such that w(i₁) ··· w(i_k) is in the same relative order as p(1) ··· p(k). If w does not contain p, then w is said to avoid p.
- We call X_{w B} a partition Schubert variety (Ding's Schubert variety) if w is a 312-avoiding permutation. Let us denote S³¹²_n this family.
 S³¹²_n is a smooth family.

Bruhat Order and Pattern Avoidance 🗢

• The Bruhat–Chevalley order (\mathfrak{S}_n, \leq) is defined by

$$v \leq w \iff X_{v \mathbf{B}} \subseteq X_{w \mathbf{B}}, \qquad \ell(w) = \dim X_{w \mathbf{B}}.$$

- For w ∈ 𝔅_n and p ∈ 𝔅_k with k ≤ n. w contains the pattern p if there exits a sequence 1 ≤ i₁ < ··· < i_k ≤ n such that w(i₁) ··· w(i_k) is in the same relative order as p(1) ··· p(k). If w does not contain p, then w is said to avoid p.
- We call X_{w B} a partition Schubert variety (Ding's Schubert variety) if w is a 312-avoiding permutation. Let us denote S³¹²_n this family.
 S³¹²_n is a smooth family.

Theorem (Lakshmibai, Sandhya-1990)

The variety $X_{w B}$ is smooth $\iff w$ avoids the patterns 3412 and 4231.

Bruhat order for \mathfrak{S}_4 .

Outline

Classification 🛅

Theorem (Lee, Masuda, Park-2021)

- $c_{T}(X_{w B}) = 1$ and smooth $\iff w$ contains the pattern 321 exactly once and avoids 3412 \iff there exists a reduced word of w containing $s_i s_{i+1} s_i$ as a factor and no other repetitions.
- $c_{\mathbf{T}}(X_{w \mathbf{B}}) = 1$ and singular $\iff w$ contains the pattern 3412 exactly once and avoids the pattern 321.

Classification 🛅

Theorem (Lee, Masuda, Park-2021)

- $c_{T}(X_{w B}) = 1$ and smooth $\iff w$ contains the pattern 321 exactly once and avoids 3412 \iff there exists a reduced word of w containing $s_i s_{i+1} s_i$ as a factor and no other repetitions.
- $c_{T}(X_{wB}) = 1$ and singular \iff w contains the pattern 3412 exactly once and avoids the pattern 321.

Theorem (Gao, Hodges, Yong-2022)

 $c_{\mathsf{B}_{L}}(X_{w | \mathsf{B}}) = 0 \iff w_{0}(J(w))w$ is a Coxeter element of $\mathfrak{S}_{J(w)}$

Classification 🛅

Theorem (Lee, Masuda, Park-2021)

- $c_{T}(X_{w B}) = 1$ and smooth $\iff w$ contains the pattern 321 exactly once and avoids 3412 \iff there exists a reduced word of w containing $s_i s_{i+1} s_i$ as a factor and no other repetitions.
- $c_{\mathbf{T}}(X_{w \mathbf{B}}) = 1$ and singular $\iff w$ contains the pattern 3412 exactly once and avoids the pattern 321.

Theorem (Gao, Hodges, Yong-2022)

$$c_{\mathsf{B}_{L}}(X_{w | \mathsf{B}}) = 0 \iff w_{0}(J(w))w$$
 is a Coxeter element of $\mathfrak{S}_{J(w)}$

Theorem (Gaetz-2022)

 $c_{\mathbf{B}_{L}}(X_{w \mathbf{B}}) = 0 \iff w \text{ avoids the following 21 patterns}$

	24531	25314	25341	34512	34521	35412	35421`
$\mathscr{P} := \langle$	42531	45123	45213	45231	45312	52314	52341
	53124	53142	53412	53421	54123	54213	54231

Outline

Theorem (Can-D.)

(i) Let $\mathscr{D}_w \subset \operatorname{GL}_n / \mathbf{B}$ be a partition Schubert variety such that $c_{\mathbf{T}}(\mathscr{D}_w) = 1$. Then \mathscr{D}_w is a spherical L-variety, where L is a Levi factor of the stabilizer of \mathscr{D}_w in GL_n .

 $\mathbf{NT}_{n}^{312} := \{ w \in \mathfrak{S}_{n}^{312} : c_{\mathbf{T}}(X_{w \mathbf{B}}) = 1 \text{ and } c_{\mathbf{B}_{\mathbf{L}}}(X_{w \mathbf{B}}) = 0 \}$

Theorem (Can-D.)

(i) Let $\mathscr{D}_w \subset \operatorname{GL}_n / \mathbf{B}$ be a partition Schubert variety such that $c_{\mathbf{T}}(\mathscr{D}_w) = 1$. Then \mathscr{D}_w is a spherical L-variety, where L is a Levi factor of the stabilizer of \mathscr{D}_w in GL_n .

 $\mathbf{NT}_{n}^{312} := \{ w \in \mathfrak{S}_{n}^{312} : c_{\mathbf{T}}(X_{w \mathbf{B}}) = 1 \text{ and } c_{\mathbf{B}_{\mathbf{L}}}(X_{w \mathbf{B}}) = 0 \}$

(ii) All singular Schubert varieties of T-complexity one are spherical.

Theorem (Can-D.)

(i) Let $\mathscr{D}_w \subset \operatorname{GL}_n / \mathbf{B}$ be a partition Schubert variety such that $c_{\mathbf{T}}(\mathscr{D}_w) = 1$. Then \mathscr{D}_w is a spherical L-variety, where L is a Levi factor of the stabilizer of \mathscr{D}_w in GL_n .

 $\mathbf{NT}_{n}^{312} := \{ w \in \mathfrak{S}_{n}^{312} : c_{\mathbf{T}}(X_{w \mathbf{B}}) = 1 \text{ and } c_{\mathbf{B}_{\mathsf{L}}}(X_{w \mathbf{B}}) = 0 \}$

(ii) All singular Schubert varieties of T-complexity one are spherical.

Example

In the flag $\operatorname{GL}_5(\mathbb{C})/\operatorname{{\textbf{B}}}_5(\mathbb{C})$, w is an element of

$$\mathbf{NT}_5^{312} = \begin{cases} 12543 & 13542 & 14325 & 14352 & 21543 & 23541 \\ 24315 & 24351 & 32145 & 32154 & 32415 & 32451 \end{cases}$$

Theorem (Can-D.)

(i) Let $\mathscr{D}_w \subset \operatorname{GL}_n / \mathbf{B}$ be a partition Schubert variety such that $c_{\mathbf{T}}(\mathscr{D}_w) = 1$. Then \mathscr{D}_w is a spherical L-variety, where L is a Levi factor of the stabilizer of \mathscr{D}_w in GL_n .

 $\mathbf{NT}_{n}^{312} := \{ w \in \mathfrak{S}_{n}^{312} : c_{\mathsf{T}}(X_{w\,\mathsf{B}}) = 1 \text{ and } c_{\mathsf{B}_{\mathsf{L}}}(X_{w\,\mathsf{B}}) = 0 \}$

(ii) All singular Schubert varieties of T-complexity one are spherical.

Example

In the flag $\operatorname{GL}_5(\mathbb{C})/\operatorname{{\textbf{B}}}_5(\mathbb{C})$, w is an element of

$$\mathbf{NT}_5^{312} = \begin{cases} 12543 & 13542 & 14325 & 14352 & 21543 & 23541 \\ 24315 & 24351 & 32145 & 32154 & 32415 & 32451 \end{cases}$$

What's the cardinality of NT_n^{312} ?

Second result 🖢

Theorem (Can-D.)

Let $\pi \in \mathscr{L}_{n,n}^+$ and $w = w_1 w_2 \cdots w_n$ be such that $\phi(\pi) = w$ for $n \ge 4$. Then w has a unique 321 if and only if π has a unique peak at the second diagonal and no other peaks at the r-th diagonal for $r \ge 3$.

Second result 🖢

Theorem (Can-D.)

Let $\pi \in \mathscr{L}_{n,n}^+$ and $w = w_1 w_2 \cdots w_n$ be such that $\phi(\pi) = w$ for $n \ge 4$. Then w has a unique 321 if and only if π has a unique peak at the second diagonal and no other peaks at the r-th diagonal for $r \ge 3$.

Corollary (Can-D.)

If $n \ge 4$, the cardinality of \mathbf{NT}_n^{312} is given by $2^{n-3}(n-2)$.

Dyck paths of NT_5^{312} .

Final result: new characterization 😌

Theorem (Can-D.)

Let w be in \mathfrak{S}_n^{312} . Let π denote the Dyck path of size n corresponding to w. Then $X_{w \mathbf{B}}$ is a spherical Schubert variety if and only if one of the following conditions holds:

Final result: new characterization 😌

Theorem (Can-D.)

Let w be in \mathfrak{S}_n^{312} . Let π denote the Dyck path of size n corresponding to w. Then $X_{w \mathbf{B}}$ is a spherical Schubert variety if and only if one of the following conditions holds:

(1) $\pi^{(2)} = \emptyset$, or

Final result: new characterization 😌

Theorem (Can-D.)

Let w be in \mathfrak{S}_n^{312} . Let π denote the Dyck path of size n corresponding to w. Then $X_{w \mathbf{B}}$ is a spherical Schubert variety if and only if one of the following conditions holds:

(1)
$$\pi^{(2)} = \emptyset$$
, or

(2) every connected component M of $\pi^{(2)}$ is either an elbow, dimple, or ledge as depicted below

Thank You/Gracias/Obrigado 😂

https://arxiv.org/abs/2212.01234

"Stones on the road? I save every single one, and one day I'll build a castle." Fernando Pessoa.