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Abstract

A Schubert variety XwB is called a partition Schubert variety (or a
Ding’s Schubert variety) if w is a 312-avoiding permutation. The com-
plexity of an algebraic action H × X → X is the codimension of a
general orbit of H in X . We proved that every partition Schubert va-
riety of torus-complexity one is spherical (for an appropriate reductive
group action). We found the size of the family of such partition Schu-
bert varieties by using Dyck paths.

Introduction

Spherical varieties. Let G be a complex connected reductive alge-
braic group. A normal G-variety Y is called a spherical variety if it
contains a dense orbit of some Borel subgroup B ⊆G. Equivalently,
Y is spherical if the codimension of a general B-orbit is zero. Hence,
the complexity, denoted cB(Y), is zero. It is well-known that all toric,
flag, wonderful, and symmetric spaces are examples of spherical va-
rieties (see [10]).
Schubert varieties. Let G = GLn, B, and T be the general linear
group over C, the subgroup of upper triangular matrices, and the diag-
onal matrices in B respectively.

G /B =
⊔
w∈Sn

BwB /B, Sn
∼= NG(T)/T .

A Schubert variety XwB is the closure of a B-orbit BwB /B in
G /B. Schubert varieties are always normal (see [3]). The codimen-
sion of a general T-orbit in XwB, denoted cT(XwB), is called the
torus complexity of XwB. We are concerned about the situation where
cT(XwB) = 1 and XwB is spherical with respect to some reductive
group action.

More precisely, there is a standard (w.r.t. T) Levi subgroup L ⊂ G
acting on XwB. Hence, we have a Borel subgroup BL ⊃ T of L acting
on XwB. We head towards under what conditions cBL

(XwB) = 0?

Bruhat Order

Weyl group. Since (Sn, S) is a Coxeter system where S =
{s1, ..., sn−1} and si = (i i + 1), every w in Sn can be written as
product of the si’s. If w = si1 · · · siℓ and ℓ is minimal among all such
expressions, then ℓ := ℓ(w) is said to be the length of w, and the ex-
pression si1 · · · siℓ is called a reduced decomposition for w.
Let SI be the parabolic subgroup of Sn generated by I ⊆ S and w0(I)
its longest element. A standard Coxeter element c ∈ SI is any product
of the elements of I listed in some order. Denote J(w) := {s ∈ S :
ℓ(sw) < ℓ(w)} the left descent set of w = w1w2 · · ·wn.
Bruhat–Chevalley order. Let T := {usu−1 : s ∈ S, u ∈ Sn} and
w, v in Sn. The partial order ≤, defined by v ≤ w, if and only if

w = vt for some t ∈ T, ℓ(w) = ℓ(v) + 1

is the Bruhat order on Sn which is a graded poset with rank function
ℓ (see [2]). Likewise, the Bruhat–Chevalley order (Sn,≤) is defined by

v ≤ w ⇐⇒ XvB ⊆ XwB, ℓ(w) = dimXwB.

Fig. 1 depicts the Bruhat order on S4 in terms of reduced words.

Pattern Avoidance

Pattern Avoidance. For w ∈ Sn and p ∈ Sk with k ≤ n, we say the
permutation w contains the pattern p if there exits a sequence 1 ≤ i1 < · · · <
ik ≤ n such that w(i1) · · ·w(ik) is in the same relative order as p(1) · · · p(k). If
w does not contain p, then w is said to avoid p.
Partition Schubert Varieties. We call XwB a partition Schubert variety, de-
noted by Dw, if w is a 312-avoiding permutation. (It is also called a Ding’s
Schubert variety in [5].) It follows from [8] that all partition Schubert varieties
are smooth.
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Fig. 1: Bruhat order for S4.

Classification

Lee-Masuda-Park [9]. cT(XwB) = 1 and smooth ⇐⇒ w contains the pattern
321 exactly once and avoids 3412 ⇐⇒ there exists a reduced word of w
containing sisi+1si as a factor and no other repetitions. Moreover, cT(XwB) = 1
and singular ⇐⇒ w contains the pattern 3412 exactly once and avoids the
pattern 321.
Gao-Hodges-Yong, Gaetz [6, 7]. cBL

(XwB) = 0 ⇐⇒ w0(J(w))w is a
Coxeter element of WJ(w) ⇐⇒ w avoids the following 21 patterns

P :=


24531 25314 25341 34512 34521 35412 35421
42531 45123 45213 45231 45312 52314 52341
53124 53142 53412 53421 54123 54213 54231


Result 1(Can-D). Let Dw ⊂ GLn /B be a partition Schubert variety such that
cT(Dw) = 1. Then Dw is a spherical L-variety, where L is a Levi factor of the
stabilizer of Dw in GLn. We denote D(n) the set of all such partition Schubert
varieties.

Proof. cT(Dw) = 1 ⇐⇒ w contains exactly once the pattern 321. Then check
off the 21 patterns in P.

Result 2(Can-D). All singular Schubert varieties ofT-complexity one are spher-
ical.
Example 1. Let Dw be of complexity one in GL5(C)/B5(C). Then w is an
element of

D(5) =

{
12543 13542 14325 14352 21543 23541
24315 24351 32145 32154 32415 32451

}

Dyck Paths

A Pretty Construction. By [1], we know that there is a bijection

D(n) L+
n,n

ℓ(w) area(ψ(w)) := π

ψ

Result 3(Can-D). Let π ∈ L+
n,n and w = w1w2 · · ·wn be such that

ϕ(π) = w for n ≥ 4. Then w has a unique 321 ⇐⇒ π has a unique
peak at the second diagonal and no other peaks at the r-th diagonal
for r ≥ 3.
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Fig. 2: The Dyck paths of D(5)

Result 4 (Can-D). If n ≥ 4, the cardinality of D(n) is given by
2n−3(n− 2). For example, Fig. 2 depicts all 12 elements of D(5).
More surprises. More cute results and future work can be found in
[4].
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