Spherical Partition Schubert Varieties

Abstract

A Schubert variety X_{wB} is called a partition Schubert variety (or a Ding's Schubert variety) if w is a 312-avoiding permutation. The complexity of an algebraic action $H \times X \to X$ is the codimension of a general orbit of H in X. We proved that every partition Schubert variety of torus-complexity one is spherical (for an appropriate reductive group action). We found the size of the family of such partition Schubert varieties by using Dyck paths.

Introduction

Spherical varieties. Let **G** be a complex connected reductive algebraic group. A normal **G**-variety **Y** is called a spherical variety if it contains a dense orbit of some Borel subgroup $\mathbf{B} \subseteq \mathbf{G}$. Equivalently, \mathbf{Y} is spherical if the codimension of a general \mathbf{B} -orbit is zero. Hence, the complexity, denoted $c_{\mathbf{B}}(\mathbf{Y})$, is zero. It is well-known that all *toric*, flag, wonderful, and symmetric spaces are examples of spherical varieties (see [10]).

Schubert varieties. Let $\mathbf{G} = \mathrm{GL}_n$, \mathbf{B} , and \mathbf{T} be the general linear group over \mathbb{C} , the subgroup of upper triangular matrices, and the diagonal matrices in \mathbf{B} respectively.

$$\mathbf{G} / \mathbf{B} = \bigsqcup_{w \in \mathfrak{S}_n} \mathbf{B} w \mathbf{B} / \mathbf{B}, \qquad \mathfrak{S}_n \cong \mathcal{N}_{\mathbf{G}}(\mathbf{T}) / \mathbf{T}$$

A Schubert variety X_{wB} is the closure of a B-orbit BwB/B in \mathbf{G} / \mathbf{B} . Schubert varieties are always normal (see [3]). The codimension of a general **T**-orbit in $X_{w\mathbf{B}}$, denoted $c_{\mathbf{T}}(X_{w\mathbf{B}})$, is called the torus complexity of X_{wB} . We are concerned about the situation where $c_{\mathbf{T}}(X_{w\mathbf{B}}) = 1$ and $X_{w\mathbf{B}}$ is spherical with respect to some reductive group action.

More precisely, there is a standard (w.r.t. \mathbf{T}) Levi subgroup $\mathbf{L} \subset \mathbf{G}$ acting on X_{wB} . Hence, we have a Borel subgroup $\mathbf{B}_{\mathbf{L}} \supset \mathbf{T}$ of \mathbf{L} acting on $X_{w\mathbf{B}}$. We head towards under what conditions $c_{\mathbf{B}_{\mathbf{L}}}(X_{w\mathbf{B}}) = 0$?

Bruhat Order

Weyl group. Since (\mathfrak{S}_n, S) is a Coxeter system where S = $\{s_1, \ldots, s_{n-1}\}$ and $s_i = (i \ i+1)$, every w in \mathfrak{S}_n can be written as product of the s_i 's. If $w = s_{i_1} \cdots s_{i_\ell}$ and ℓ is minimal among all such expressions, then $\ell := \ell(w)$ is said to be the length of w, and the expression $s_{i_1} \cdots s_{i_\ell}$ is called a reduced decomposition for w. Let \mathfrak{S}_I be the parabolic subgroup of \mathfrak{S}_n generated by $I \subseteq S$ and $w_0(I)$ its longest element. A standard Coxeter element $c \in \mathfrak{S}_I$ is any product of the elements of I listed in some order. Denote $J(w) := \{s \in S :$ $\ell(sw) < \ell(w)$ the left descent set of $w = w_1 w_2 \cdots w_n$. **Bruhat–Chevalley order.** Let $T := \{usu^{-1} : s \in S, u \in \mathfrak{S}_n\}$ and w, v in \mathfrak{S}_n . The partial order \leq , defined by $v \leq w$, if and only if w = vt for some $t \in T$, $\ell(w) = \ell(v) + 1$

is the Bruhat order on \mathfrak{S}_n which is a graded poset with rank function ℓ (see [2]). Likewise, the Bruhat–Chevalley order (\mathfrak{S}_n, \leq) is defined by $v \le w \iff X_{v\mathbf{B}} \subseteq X_{w\mathbf{B}}, \qquad \ell(w) = \dim X_{w\mathbf{B}}.$

Fig. 1 depicts the Bruhat order on \mathfrak{S}_4 in terms of reduced words.

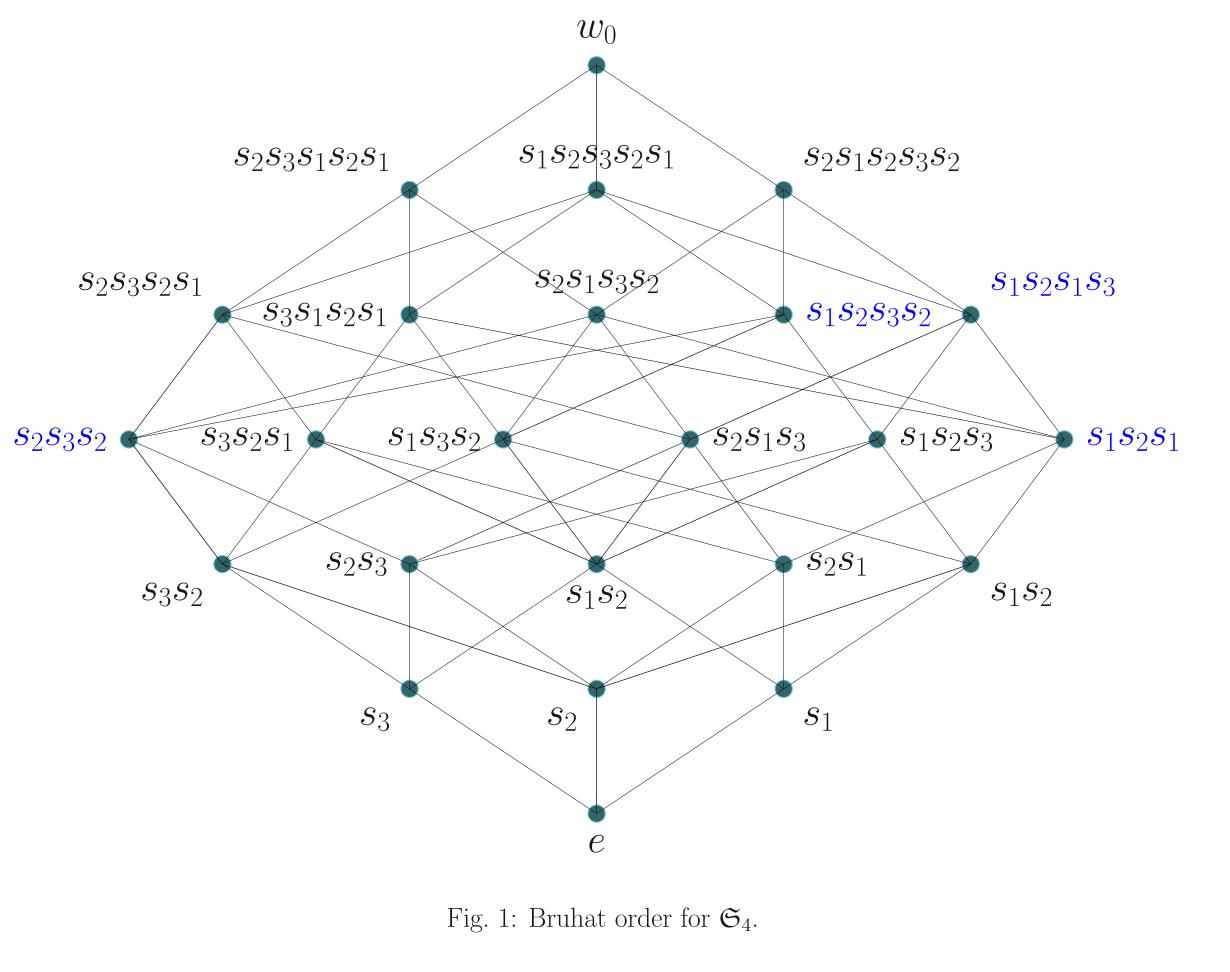
Mahir B. Can[†], Néstor F. Díaz Morera[‡]

[†]mahirbilencan@gmail.com, [‡]ndiazmorera@tulane.edu

Pattern Avoidance

Pattern Avoidance. For $w \in \mathfrak{S}_n$ and $p \in \mathfrak{S}_k$ with $k \leq n$, we say the permutation w contains the pattern p if there exits a sequence $1 \leq i_1 < \cdots < i_n$ $i_k \leq n$ such that $w(i_1) \cdots w(i_k)$ is in the same relative order as $p(1) \cdots p(k)$. If w does not contain p, then w is said to avoid p.

Partition Schubert Varieties. We call X_{wB} a partition Schubert variety, denoted by \mathscr{D}_w , if w is a 312-avoiding permutation. (It is also called a Ding's Schubert variety in [5].) It follows from [8] that all partition Schubert varieties are smooth.



Classification

Lee-Masuda-Park [9]. $c_{\mathbf{T}}(X_{w\mathbf{B}}) = 1$ and smooth $\iff w$ contains the pattern 321 exactly once and avoids 3412 \iff there exists a reduced word of wcontaining $s_i s_{i+1} s_i$ as a factor and no other repetitions. Moreover, $c_{\mathbf{T}}(X_w \mathbf{B}) = 1$ and singular $\iff w$ contains the pattern 3412 exactly once and avoids the pattern 321.

Gao-Hodges-Yong, Gaetz [6, 7]. $c_{\mathbf{B}_{\mathbf{L}}}(X_{w\mathbf{B}}) = 0 \iff w_0(J(w))w$ is a Coxeter element of $W_{J(w)} \iff w$ avoids the following 21 patterns

$$\mathscr{P} := \begin{cases} 24531 \ 25314 \ 25341 \ 34512 \ 34521 \ 3541 \\ 42531 \ 45123 \ 45213 \ 45231 \ 45312 \ 5231 \\ 53124 \ 53142 \ 53412 \ 53412 \ 53421 \ 54123 \ 5421 \end{cases}$$

Result 1(Can-D). Let $\mathscr{D}_w \subset \operatorname{GL}_n / \mathbf{B}$ be a partition Schubert variety such that $c_{\mathbf{T}}(\mathscr{D}_w) = 1$. Then \mathscr{D}_w is a spherical **L**-variety, where **L** is a Levi factor of the stabilizer of \mathscr{D}_w in GL_n . We denote $\mathscr{D}(n)$ the set of all such partition Schubert varieties.

Proof. $c_{\mathbf{T}}(\mathscr{D}_w) = 1 \iff w$ contains exactly once the pattern 321. Then check off the 21 patterns in \mathscr{P} .

Result 2(Can-D). All singular Schubert varieties of **T**-complexity one are spherical.

Example 1. Let \mathscr{D}_w be of complexity one in $\operatorname{GL}_5(\mathbb{C})/\operatorname{B}_5(\mathbb{C})$. Then w is an element of

 $\mathscr{D}(5) = \begin{cases} 12543 \ 13542 \ 14325 \ 14352 \ 21543 \ 23541 \\ 24315 \ 24351 \ 32145 \ 32154 \ 32415 \ 32451 \end{cases}$

TULANE UNIVERSITY **SCHOOL** of **SCIENCE** & ENGINEERING

Dyck Paths

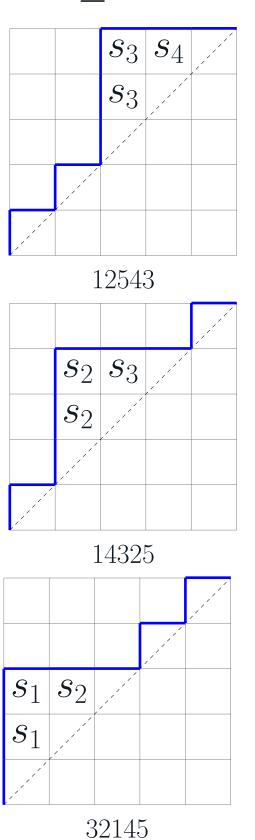
A Pretty Construction. By [1], we know that there is a bijection

$$\mathscr{D}(n) \xrightarrow{\psi} L_{n,n}^+$$

 $\ell(w) \longmapsto \operatorname{area}(\psi(w)) := \pi$

Result 3(Can-D). Let $\pi \in L_{n,n}^+$ and $w = w_1 w_2 \cdots w_n$ be such that $\phi(\pi) = w$ for $n \ge 4$. Then w has a unique 321 $\iff \pi$ has a unique peak at the second diagonal and no other peaks at the r-th diagonal for $r \geq 3$.

- 12 35421 4 52341
- 13 54231



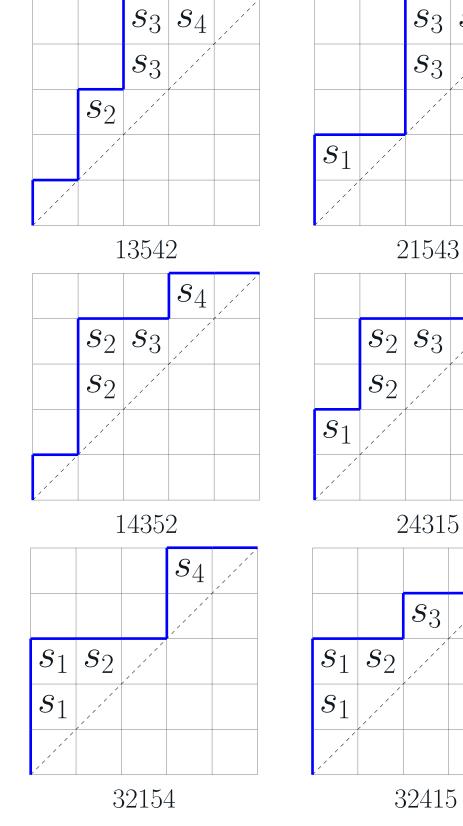


Fig. 2: The Dyck paths of $\mathscr{D}(5)$

Result 4 (Can-D). If $n \geq 4$, the cardinality of $\mathscr{D}(n)$ is given by $2^{n-3}(n-2)$. For example, Fig. 2 depicts all 12 elements of $\mathscr{D}(5)$. More surprises. More cute results and future work can be found in |4|.

References

- [1] J. Bandlow and K. Killpatrick. "An area-to-inv bijection between Dyck paths and 312-avoiding permutations". In: *Electron. J. Combin.* 8.1 (2001), Research Paper 40, 16.
- [2] A. Björner and F. Brenti. Combinatorics of Coxeter groups. Graduate Texts in Mathematics. Springer, 2005.
- [3] M. Brion. "Lectures on the geometry of flag varieties". In: Topics in cohomological studies of algebraic varieties 19.1 (2005), pp. 33-85.
- [4] M. B. Can and N. Diaz Morera. Nearly Toric Schubert Varieties and Dyck Paths. 2022. URL: https://arxiv.org/abs/2212.01234. [5] M. Develin, J. L. Martin, and V. Reiner. "Classification of Ding's Schubert Varieties: Finer Rook Equivalence". In: Canadian Journal of Mathematics 59.1 (2007), pp. 36–62.
- [6] C. Gaetz. "Spherical Schubert varieties and pattern avoidance". In: Selecta Math. (N.S.) 28.2 (2022), Paper No. 44, 9.
- [7] Y. Gao, R. Hodges, and A. Yong. "Classifying Levi-spherical Schubert varieties". In: Sém. Lothar. Combin. 86B (2022), Art. 29, 12.
- [8] V. Lakshmibai and B. Sandhya. "Criterion for smoothness of Schubert varieties in Sl(n)/B". In: Proc. Indian Acad. Sci. Math. Sci. 100.1 (1990), pp. 45–52. [9] E. Lee, M. Masuda, and S. Park. "On Schubert varieties of complexity one". In:
- Pacific J. Math. 315.2 (2021), pp. 419–447.
- [10] D. A. Timashev. Homogeneous spaces and equivariant embeddings. Vol. 138. Encyclopaedia of Mathematical Sciences. Invariant Theory and Algebraic Transformation Groups, 8. Springer, Heidelberg, 2011.

