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Abstract

We study the partition Schubert varieties that are spherical ones via
Dyck paths. Specifically, among the Schubert varieties whose asso-
ciated permutation are 312-avoiding, we determine which ones are
spherical varieties by this combinatorial object. We call these lattice
paths spherical Dyck paths, and we find a recursive formula to count
them. On the other hand, a spherical G-variety Y is nearly toric va-
riety if the general codimension of torus in Y is one. We identify the
nearly toric partition Schubert varieties and all singular nearly toric
Schubert varieties. Moreover, at computing their cardinalities, the
Fibonacci numbers pop up surprisingly (see [2] for more details).

Algebraic-Geometric Scene

Notation. The algebraic groups and representations are defined
over C.

G : connected reductive group T : maximal torus in B
B : Borel subgroup of G W : Weyl group of (G, T)

S : Coxeter generators of (G, B, T)
PI : parabolic subgroup generated by I ⊆ S and B

LI : Levi subgroup of PI containing T w0(I) : longest element of PI

Definition 1. An irreducible normal G-variety Y is spherical if a
Borel subgroup B of G has an open orbit in Y.
Definition 2. Let Y be a spherical variety. The T-complexity of Y,
denoted by cT(Y), is the codimension of the maximal torus T in Y.
If the T-complexity of T is 1, we call Y a nearly toric variety.
Example 1. If G is the general linear group GLn, the Borel sub-
group and maximal torus are the upper triangular matrices and the
diagonal matrices respectively. By the Bruhat-Chevalley decomposi-
tion, we obtain the full flag variety

GLn / B =
⊔

w∈Wn

B w B / B

where Wn is the symmetric group. In particular, the B-orbit
B w0 B / B is open in GLn / B. Hence, GLn / B is a spherical va-
riety.
Definition 3. Let w be in Wn. The Schubert variety associated with
w is the B-orbit (Zariski) closure Xw B := B w B / B in GLn / B.
Moreover, Xw B is said to be a partition Schubert variety if w is
a 312-avoiding permutation. Let W312

n denote the set of all 312-
avoiding permutations.

Bruhat order on W3

∗ ∗ 1
∗ 1 0
1 0 0


 ∼ C3

∗ ∗ 1
1 0 0
0 1 0


C2 ∼

∗ 1 0
1 0 0
0 0 1


C1 ∼

1 0 0
0 1 0
0 0 1


C0 ∼

∗ 1 0
∗ 0 1
1 0 0


 ∼ C2

1 0 0
0 ∗ 1
0 1 0


 ∼ C1 Dyck paths L +

3

Definition 4. Let BL be Borel subgroup of L containing T. The
Schubert variety Xw B is spherical if BL has only finitely many orbits
in Xw B.

X-ray: Combinatorics

Definition 5. A Dyck path π is an elbow if its Dyck word has the form
NN...NEE...E, where the number of N’s and E’s are equal. A Dyck path π
is an ledge if its Dyck word has the form NN...NE...ENE....EE starting with
(n − 1)-N steps followed by n-E steps, a unique N step, and ends with at
least two E steps.
Definition 6. Let π = a1a2...ar be a Dyck word. We say that a Dyck path π′ is
a E+ extension of π if π′ = Eπ. A portion τ of π(r) is said to be a connected
component if τ starts and ends at the r-th diagonal, and it intersects the
r-th diagonal exactly twice, for 0 ≤ r ≤ n − 1.

(a) Ledge and elbow of π(0)
π(0)

(b) Elbow and ledge of π(1)

π(1)

Definition 7. A Dyck path π is called spherical if every connected compo-
nent on the first diagonal π(0) is either an elbow or a ledge as depicted in
(a), or every connected component of π(1) is an elbow, or a ledge whose E+
extension is the final step of a connected component of π(0) as shown in (b).
Definition 8. The Bruhat–Chevalley on W is the partial order defined by

v ≤ w ⇐⇒ Xv B ⊆ Xw B, ℓ(w) := dim Xw B.

Definition 9. Let J(w) := {s ∈ S : ℓ(sw) < ℓ(w)} denote the left descent
set of w. The Levi factor LI of PI is given by I = J(w). A standard Coxeter
element c in WI is any product of the elements of I sorted out in some
order.
Example 2. Let w = 2 3 1 8 7 6 9 5 4 10 be in W10. We parse

w ∈ W312
10 , J(w) = {s2, s4, s5, s6, s7}, w0(J(w)) = s1s4s5s4s6s5s4s7s6s5s4.

Classification

Gao-Hodges-Yong [5]. A Schubert variety Xw B is spherical if and only if
w0(J(w))w is a standard Coxeter element (Boolean).

w = 2 3 1 8 7 6 9 5 4 10⇝ w0(J(w))w = s2s8s7 = c.

Gaetz [4]. A Schubert variety Xw B is spherical if and only if w avoids the
following 21 patterns

P :=


24531 25314 25341 34512 34521 35412 35421
42531 45123 45213 45231 45312 52314 52341
53124 53142 53412 53421 54123 54213 54231

 .

Can-Diaz [2]. Let w be in W312
n . Let π denote the Dyck path of size n

corresponding to w. Then Xw B is a spherical Schubert variety if and only
if π is spherical Dyck path.

Lee-Masuda-Park [6]. cT(Xw B) = 1 and smooth ⇐⇒ w contains the
pattern 321 exactly once and avoids 3412 ⇐⇒ there exists a reduced
word of w containing sisi+1si as a factor and no other repetitions. Moreover,
cT(Xw B) = 1 and singular ⇐⇒ w contains the pattern 3412 exactly once
and avoids the pattern 321.

Corollary 1 (Can-Diaz). If c(Xw B) = 1 and w in W312, then Xw B is nearly
toric variety. Moreover, its cardinality is 2n−3(n − 2) for n ≥ 4.

Can-Diaz [2]. Let Xw B be a singular Schubert variety of T-
complexity 1. Then Xw B is nearly toric variety (There is a ge-
ometric proof in [3]). Furthermore, let bn be the cardinality of
this family. Then the generating series of bn is given by A001871-
OEIS.

Bankston-Diaz. Let Sn be the set of spherical Dyck paths.

|Sn| =


1 n = 1
n−1

∑
k=2

|Sn−k|π(1)
k + π

(1)
n + |Sn−1| n ≥ 2

, π
(1)
n =

{
1 1 ≤ n ≤ 2
3 · 2n−3 − 1 n ≥ 3

.

π
(1)
n counts the independence number of n-Mylcielski graph

based on A266550-OIES.

Conjuncture. If w = 25314, we found out that cT(Xw B) = 1 is
smooth, yet cBL(Xw B) ̸= 0. By using [7], the sequence

n 1 2 3 4 5 6 7 8 9
rn 0 0 1 6 24 84 275 864 2639

⇝ rn+2 = n · F2n, n ≥ 0

depicted in A317408-OEIS.

Sketchy Proof

Let w = 2 3 1 8 7 6 9 5 4 10 be in S312
10 ...

ws7s8 = 2 3 1 8 7 6 5 4 9 10 := w1

w1s4s5s6s7 = 2 3 1 7 6 5 4 8 9 10 := w2

w2s4s5s6 = 2 3 1 6 5 4 7 8 9 10 := w3

w3s4s5 = 2 3 1 5 4 6 7 8 9 10 := w4

w4s4 = 2 3 1 4 5 6 7 8 9 10 := w5

w5s2 = 2 1 3 4 5 6 7 8 9 10 := w6

w6s1 = 1 2 3 4 5 6 7 8 9 10 := e

(s7s8|s4s5s6s7|s4s5s6|s4s5|s4|s2|s1)
−1︸ ︷︷ ︸

Red(w)

s8s7

s7s6s5s4

s6s5s4

s5s4

s4

s2

s1

2 3 1 8 7 6 9 5 4 10

This construction was developed by Bandlow-Killpatric in [1]

W312
n L +

n

ψ

ϕ

; ℓ(w) area(ψ(w)) := π.
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