SPHERICAL DYCK PATHS Mahir B. Can[†], Néstor F. Díaz Morera[‡] [†]mahirbilencan@gmail.com, [‡]ndiazmorera@tulane.edu ### Abstract We study the *partition Schubert* varieties that are *spherical* ones via *Dyck paths*. Specifically, among the Schubert varieties whose associated permutation are 312-avoiding, we determine which ones are *spherical* varieties by this combinatorial object. We call these lattice paths *spherical Dyck paths*, and we find a recursive formula to count them. On the other hand, a spherical **G**-variety **Y** is *nearly toric variety* if the general codimension of *torus* in **Y** is one. We identify the nearly toric partition Schubert varieties and all *singular* nearly toric Schubert varieties. Moreover, at computing their cardinalities, the *Fibonacci* numbers pop up surprisingly (see [2] for more details). ### Algebraic-Geometric Scene **Notation.** The algebraic groups and representations are defined over \mathbb{C} . | G : connected reductive group | T: maximal torus in B | |---|------------------------| | B : Borel subgroup of G | W: Weyl group of (G,T) | | S: Coxeter generators of (G, B, T) | | | P_I : parabolic subgroup generated by $I\subseteq S$ and B | | | $L_{\rm I}$: Levi subgroup of $P_{\rm I}$ containing T $w_0({\rm I})$: longest element of $P_{\rm I}$ | | **Definition 1.** An irreducible normal **G**-variety **Y** is **spherical** if a Borel subgroup **B** of **G** has an open orbit in **Y**. **Definition 2.** Let Y be a spherical variety. The T-complexity of Y, denoted by $c_T(Y)$, is the codimension of the maximal torus T in Y. If the T-complexity of T is 1, we call Y a **nearly toric variety**. **Example 1.** If **G** is the **general linear group** GL_n , the Borel subgroup and maximal torus are the *upper triangular matrices* and the *diagonal matrices* respectively. By the Bruhat-Chevalley decomposition, we obtain the **full flag variety** $$GL_n / \mathbf{B} = \bigsqcup_{w \in \mathbf{W}} \mathbf{B} w \mathbf{B} / \mathbf{B}$$ where \mathbf{W}_n is the *symmetric group*. In particular, the **B**-orbit $\mathbf{B} w_0 \mathbf{B} / \mathbf{B}$ is open in $\operatorname{GL}_n / \mathbf{B}$. Hence, $\operatorname{GL}_n / \mathbf{B}$ is a spherical variety. **Definition 3.** Let w be in W_n . The Schubert variety associated with w is the B-orbit (Zariski) closure $X_{wB} := \overline{BwB/B}$ in GL_n/B . Moreover, X_{wB} is said to be a **partition** Schubert variety if w is a 312-avoiding permutation. Let W_n^{312} denote the set of all 312-avoiding permutations. **Definition 4.** Let $\mathbf{B_L}$ be Borel subgroup of \mathbf{L} containing \mathbf{T} . The Schubert variety $X_{w\,\mathbf{B}}$ is spherical if $\mathbf{B_L}$ has only finitely many orbits in $X_{w\,\mathbf{B}}$. ### X-ray: Combinatorics **Definition 5.** A *Dyck path* π is an **elbow** if its *Dyck word* has the form NN...NEE...E, where the number of N's and E's are equal. A Dyck path π is an **ledge** if its Dyck word has the form NN...NE...ENE....EE starting with (n-1)-N steps followed by n-E steps, a unique N step, and ends with at least two E steps. **Definition 6.** Let $\pi = a_1 a_2 ... a_r$ be a Dyck word. We say that a Dyck path π' is a E_+ *extension* of π if $\pi' = E \pi$. A portion τ of $\pi^{(r)}$ is said to be a **connected component** if τ starts and ends at the r-th diagonal, and it intersects the r-th diagonal exactly twice, for $0 \le r \le n-1$. **Definition 7.** A Dyck path π is called **spherical** if every connected component on the first diagonal $\pi^{(0)}$ is either an elbow or a ledge as depicted in (a), or every connected component of $\pi^{(1)}$ is an elbow, or a ledge whose E_+ extension is the final step of a connected component of $\pi^{(0)}$ as shown in (b). Definition 8. The Bruhat-Chevalley on W is the partial order defined by $$v \leq w \iff X_{v \mathbf{B}} \subseteq X_{w \mathbf{B}}, \qquad \ell(w) := \dim X_{w \mathbf{B}}.$$ **Definition 9.** Let $J(w) := \{s \in S : \ell(sw) < \ell(w)\}$ denote the **left descent** set of w. The Levi factor $\mathbf{L_I}$ of $\mathbf{P_I}$ is given by $\mathbf{I} = J(w)$. A **standard Coxeter element c** in $\mathbf{W_I}$ is any product of the elements of \mathbf{I} sorted out in some order. **Example 2.** Let w = 23187695410 be in W_{10} . We parse $$w \in \mathbf{W}_{10}^{312}$$, $J(w) = \{s_2, s_4, s_5, s_6, s_7\}$, $w_0(J(w)) = s_1 s_4 s_5 s_4 s_6 s_5 s_4 s_7 s_6 s_5 s_4$. ### Classification **Gao-Hodges-Yong** [5]. A Schubert variety $X_{w \mathbf{B}}$ is spherical if and only if $w_0(J(w))w$ is a standard Coxeter element (*Boolean*). $$w = 23187695410 \rightsquigarrow w_0(J(w))w = s_2s_8s_7 = \mathbf{c}.$$ **Gaetz** [4]. A Schubert variety $X_{w \mathbf{B}}$ is spherical if and only if w avoids the following 21 patterns $$\mathscr{P} := \left\{ \begin{array}{l} 24531 \ 25314 \ 25341 \ 34512 \ 34521 \ 35412 \ 35421 \\ 42531 \ 45123 \ 45213 \ 45231 \ 45312 \ 52314 \ 52341 \\ 53124 \ 53142 \ 53412 \ 53421 \ 54123 \ 54213 \ 54231 \end{array} \right\}.$$ **Can-Diaz** [2]. Let w be in W_n^{312} . Let π denote the Dyck path of size n corresponding to w. Then $X_{w \mathbf{B}}$ is a spherical Schubert variety if and only if π is spherical Dyck path. **Lee-Masuda-Park [6].** $c_{\mathbf{T}}(X_{w\,\mathbf{B}})=1$ and smooth $\iff w$ contains the pattern 321 exactly once and avoids 3412 \iff there exists a reduced word of w containing $s_i s_{i+1} s_i$ as a factor and no other repetitions. Moreover, $c_{\mathbf{T}}(X_{w\,\mathbf{B}})=1$ and singular $\iff w$ contains the pattern 3412 exactly once and avoids the pattern 321. Corollary 1 (Can-Diaz). If $c(X_{wB}) = 1$ and w in W^{312} , then X_{wB} is nearly toric variety. Moreover, its cardinality is $2^{n-3}(n-2)$ for $n \ge 4$. **Can-Diaz** [2]. Let $X_{w B}$ be a singular Schubert variety of T-complexity 1. Then $X_{w B}$ is nearly toric variety (There is a geometric proof in [3]). Furthermore, let b_n be the cardinality of this family. Then the generating series of b_n is given by A001871-OEIS. **Bankston-Diaz.** Let \mathcal{S}_n be the set of spherical Dyck paths. $$|\mathscr{S}_n| = \begin{cases} 1 & n = 1 \\ \sum_{k=2}^{n-1} |\mathscr{S}_{n-k}| \pi_k^{(1)} + \pi_n^{(1)} + |\mathscr{S}_{n-1}| & n \ge 2 \end{cases} \quad \pi_n^{(1)} = \begin{cases} 1 & 1 \le n \le 2 \\ 3 \cdot 2^{n-3} - 1 & n \ge 3 \end{cases}.$$ $\pi_n^{(1)}$ counts the independence number of *n-Mylcielski graph* based on A266550-OIES. **Conjuncture.** If w = 25314, we found out that $c_T(X_{wB}) = 1$ is smooth, yet $c_{B_L}(X_{wB}) \neq 0$. By using [7], the sequence $$\frac{n \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9}{r_n \mid 0 \mid 0 \mid 1 \mid 6 \mid 24 \mid 84 \mid 275 \mid 864 \mid 2639} \leadsto r_{n+2} = n \cdot \mathscr{F}_{2n}, \quad n \geq 0$$ depicted in A317408-OEIS. ## Sketchy Proof Let w = 23187695410 be in \mathfrak{S}_{10}^{312} ... This construction was developed by **Bandlow-Killpatric** in [1] $$\mathbf{W}_{n}^{312} \xrightarrow{\psi}_{\phi} \mathscr{L}_{n}^{+} ; \quad \ell(w) \longmapsto \operatorname{area}(\psi(w)) := \pi.$$ #### References [1] J. Bandlow and K. Killpatrick. "An area-to-inv bijection between Dyck paths and 312-avoiding permutations". In: *Electron. J. Combin.* 8.1 (2001), Research Paper 40, 16. [2] M. B. Can and N. Diaz Morera. *Nearly Toric Schubert Varieties and Dyck Paths*. 2022. URL: https://arxiv.org/abs/2212.01234. [3] Mahir Bilen Can and Pinaki Saha. *Applications of Homogeneous Fiber Bundles to the Schubert Varieties*. 2023. arXiv: 2305.00468 [math.AG]. [4] C. Gaetz. "Spherical Schubert varieties and pattern avoidance". In: *Selecta Math.* (N.S.) 28.2 (2022), Paper No. 44, 9. [5] Y. Gao, R. Hodges, and A. Yong. "Classifying Levi-spherical Schubert varieties". In: *Sém. Lothar. Combin.* 86B (2022), Art. 29, 12. [6] E. Lee, M. Masuda, and S. Park. "On Schubert varieties of complexity one". In: *Pacific J. Math.* 315.2 (2021), pp. 419–447. [7] The Sage Developers. SageMath, the Sage Mathematics Software System (Version x.y.z). https://www.sagemath.org. YYYY.