TULANE UNIVERSITY SCHOOL of SCIENCE \&̌ ENGINEERING

Lexicographic shellability of Sects

Aram Bingham ${ }^{\dagger}$, Néstor F. Díaz Morera ${ }^{\ddagger}$

${ }^{\dagger}$ arambingham@mines.edu, ${ }^{\ddagger}$ ndiazmorera@tulane.edu

Abstract

In this investigation, based on [2], we show that the Bruhat order on the sects of a symmetric variety of type AIII are lexicographically shellable. Our proof proceeds from a description of these posets as rook placements in a partition shape which fits in a $p \times q$ rectangle. This allows us to extend an EL-labeling of the rook monoid given by Can [3] to an arbitrary sect. As a special case, our result implies that the Bruhat order on matrix Schubert varieties is lexicographically shellable.

Clans, Sects, and Rooks

Definition 1. Let p and q be two positive integers such that $p+q=$ n. A (p, q)-clan is an ordered set of n symbols $c_{1} \ldots c_{n}$ such that: - Each symbol c_{i} is either " + ", " - ", or a natural number.

- If $c_{i} \in \mathbb{N}$, then there is a unique index $j \neq i$ such that $c_{i}=c_{j}$.
- The difference between the numbers of " + " and " - " symbols in the clan is equal to $p-q$. If $q>p$, then we have $q-p$ more minus signs than plus signs.
E.g. $\gamma_{1}=+1212-$ and $\gamma_{2}=+1717-$ are equivalent $(3,3)$-clans. The set of all (p, q)-clans is denoted by $\mathcal{C}_{p, q}$.
Matsuki-Oshima-Yamamoto [5, 7]. The orbits of $\mathrm{GL}_{p}(\mathrm{C}) \times$ $\mathrm{GL}_{q}(\mathrm{C}):=\mathbf{L}$ on $\mathrm{GL}_{p+q}(\mathbf{C}) / \mathbf{B}$, where \mathbf{B} is the Borel subgroup of $\mathrm{GL}_{p+q}(\mathbb{C}):=\mathbf{G}$, are parameterized by $\mathcal{C}_{p, q}$. The Bruhat poset $\left(\mathcal{C}_{p, q}, \leq\right)$ is defined by

$$
\gamma_{1} \leq \gamma_{2} \Longleftrightarrow \mathcal{O}_{\gamma_{1}} \subseteq \overline{\mathcal{O}_{\gamma_{2}}}
$$

for γ_{1}, γ_{2} in $\mathcal{C}_{p, 9}$ corresponding to \mathbf{B}-orbits $\mathcal{O}_{\gamma_{1}}$ and $\mathcal{O}_{\gamma_{2}}$ respectively. The matchless (base clan) clans τ_{γ}, consisting only " + " and " - ", correspond to min-dimensional orbits.
Definition 2. Let C_{λ} denote the Schubert cell of \mathbf{G} / \mathbf{P} associated to the partition $\lambda \in\left({ }_{p}^{[p+q]}\right)$ where \mathbf{P} is the parabolic subgroup. Then the sect $\mathcal{C}_{p, q}^{\lambda}$ is the collection of clans γ whose corresponding orbits satisfy $\pi\left(\mathcal{O}_{\gamma}\right)=C_{\lambda}$ where $\pi: \mathbf{G} / \mathbf{L} \rightarrow \mathbf{G} / \mathbf{P}$ is the natural projection map.
E.g.1. The Bruhat poset of $\mathcal{C}_{2,2}$ can be depicted below by using Wyser's characterization [6]. Also, the sect $\mathcal{C}_{2,2}^{\lambda}$ for $\lambda=(2,2)$ is colored by green.

Bingham-Can[1]. Matchless clans are in one-to-one correspondence with sects by drawing a lattice path from the origin to the point (q, p) where " - " correspond to "east" steps and " + "to "north" steps. The partition λ then consists of the boxes that lie inside the rectangle and weakly above this lattice path.

Definition 3. Let $R(\lambda)$ denote the set of rook placements of partition λ. For ρ, π in $R(\lambda)$, we say $\rho \leq \pi \Longleftrightarrow r t_{\rho} \leq r t_{\pi}$ where $R(\lambda) \xrightarrow{r t} \mathbb{N}$ is a labeling of the boxes of $[\lambda]$ by the number of rooks weakly northwest of each box.

Bingham-Can[1]. There is an isomorphism between the posets $R(\lambda)$ and $\mathcal{C}_{p, q}^{\lambda}$ as follows

- Bring down the clan $\gamma=c_{1} \cdots c_{p+q}$ to the base clan τ_{γ} by replacing c_{i} by a -" and c_{j} by a " + " whenever $c_{i}=c_{j} \in \mathbb{N}$ with $i<j$ for every i, j.
- Let the positions of the - symbols in τ_{γ} be i_{1}, \ldots, i_{q} and the positions of the + symbols be j_{1}, \ldots, j_{p} from left to right.
- For each pair $c_{i_{k}}=c_{j_{l}} \in \mathbb{N}$ in γ, we place a rook in the square with northeast corner (k, l).

Definition 4. The partial permutation associated to a clan $\gamma=c_{1} \cdots c_{p+q}$ in $\mathcal{C}_{p, q}$ is the function $\phi_{\gamma}:[q] \rightarrow[p] \cup\{0\}$ defined algorithmically as follows. Label the positions of the " - " in τ_{γ} by i_{1}, \ldots, i_{q} and the positions of the " + " as j_{1}, \ldots, j_{p} in ascending order. Then we read the symbols $c_{1} \cdots c_{p+q}$ left to right and construct ϕ_{γ} as follows.

1. If $c_{i_{s}}=c_{j_{t}} \in \mathbb{N}$ in γ, then $\phi_{\gamma}(s)=t$. These are the rooks that are placed within the associated partition λ under B-C [1].
2. After the previous step, we modify γ by iteratively replacing all 1212 patterns by 1221 patterns to obtain a clan which we call $\hat{\gamma}_{0} \in \mathcal{C}_{p, q}^{\lambda}$ and which has symbols $\hat{c}_{1} \cdots \hat{c}_{p+q}$.
3. For each simple, innermost $1+-1$ pattern in $\hat{\gamma}_{0}$ of the form $\hat{c}_{a} \hat{c}_{j} \hat{c}_{\hat{c}_{k}} \hat{c}_{b}$, set $\phi_{\gamma}(k)=l$. Then delete all of the symbols involved in any simple, innermost $1+-1$ pattern to obtain a new clan $\hat{\gamma}_{1}$ which inherits position labels from $\hat{\gamma}_{0}$.
4. Repeat the procedure of the previous step on $\hat{\gamma}_{1}$, and so on until we obtain a clan $\hat{\gamma}_{s}$ which is free of $1+-1$ patterns.
5. Once the clan $\hat{\gamma}_{s}$ which is free of $1+-1$ patterns is obtained, for any $k \in[q]$ which has not yet been assigned we let $\phi_{\gamma}(k)=0$.
We will represent ϕ_{γ} using one-line notation. For instance, the partial permutation associated to the clan $\gamma=1+-221$ is $\phi_{\gamma}=(3,1,2)$.

Shelling

Definition 5. Let $C(\mathcal{P}):=\{(u, v) \in \mathcal{P} \times \mathcal{P} \mid u \lessdot v\}$ denote the set of covering relations in a poset \mathcal{P}. An EL-labelling on $(\mathcal{P},<)$ is a $\operatorname{map} \eta: C(\mathcal{P}) \rightarrow\left(\Lambda, \leq_{\text {LEX }}\right)$ holding the following:

- For each $u<v$, there is a unique saturated chain $u \lessdot u_{1} \lessdot \cdots \lessdot$ $u_{k} \lessdot v$ with $\eta\left(u, u_{1}\right) \leq \eta\left(u_{1}, u_{2}\right) \leq \cdots \leq \eta\left(u_{k}, v\right)$.
- The above label sequence is lexicographically smaller than the label sequence for every other saturated chain from u to v.
E.g.2. Let \mathcal{R}_{n} denote the rook monoid. Choose $x=\left(a_{1}, \ldots, a_{n}\right), y=$ $\left(a_{1}, \ldots, a_{n}\right) \in \mathcal{R}_{n}$.
- (Type 1) Assume that $a_{k}=b_{k}$ for all $k=\{1, \ldots, \hat{i}, \ldots, n\}$ and that $a_{i}<b_{i}$. Then, y covers x if and only if either
$\star 0=a_{i}$, and there exits a sequence $\left\{1 \leq j_{1}<\cdots<j_{s}<i\right\}$ such that $a_{j_{1}}, \ldots, a_{j_{s}}$ is equal to $\{1, \ldots, s\}, b_{i}=s+1$, and $b_{j}=a_{j}>0$ for $j>i$, or
$\star 0<a_{i}$, and there exits a sequence $1 \leq j_{1}<\cdots<j_{s}<i$ such that $\left\{a_{j_{1}}, \ldots, a_{j_{s}}\right\}$ is equal to $\left\{a_{i}+1, \ldots, a_{i}+s\right\}, b_{i}=s+1$, and $b_{i}=a_{i}+s+1>0$.
- (Type 2) Suppose that $a_{j}=b_{i}, a_{i}=b_{j}$, and $a_{j}<a_{i}$ for $i<j$. Moreover, suppose that for all $k \in\{1, \ldots, \hat{i}, \ldots, \hat{j}, \ldots, n\}, a_{k}=b_{k}$. Then, $x \lessdot y$ if and only if either $a_{j}<a_{s}$, or $a_{s}<a_{i}$ for $s=$ $i+1, \ldots, j-1$.
Mahir proved in [3] that \mathcal{R}_{n} is lexicographic shellable by deploying

$$
\begin{aligned}
& C\left(\mathcal{R}_{n}\right) \longrightarrow \eta(=[n] \times[n] \\
& (x, y) \longmapsto \eta(x, y):=\left\{\begin{array}{l}
\left(a_{i}, b_{i}\right) \text { if } x \lessdot y \text { by type 1 } \\
\left(a_{i}, a_{j}\right) \text { if } x \lessdot y \text { by type 2 }
\end{array}\right.
\end{aligned}
$$

Bingham-Diaz [2]. The restriction of Bruhat order on $\mathrm{GL}_{p+q} /\left(\mathrm{GL}_{p} \times \mathrm{GL}_{q}\right)$ to any sect $\mathcal{C}_{p, q}^{\lambda}$ gives an $E L$-shellable poset. In particular, the Bruhat order on matrix Schubert varieties is EL-shellable.
The coverings and labeling for $\mathcal{C}_{p, q}^{\lambda}$ are rooted in the concepts devel oped by Incitti, Wyser, and Can in their works [4, 6, 3]. For exact details, please refer to our in-depth exploration in [2]...

References

[1] Aram Bingham and Mahir Bilen Can. "Sects". In: J. Algebra 560 (2020) pp. 192-218.
[2] Aram Bingham and Nestor Diaz Morera. "Lexicographic shellability of sects". In: (2023). arXiv: 2312.15093 [math. C0].
3] Mahir Bilen Can. "The rook monoid is lexicographically shellable". In: Eu ropean J. Combin. 81 (2019), pp. 265-275.
[4] Federico Incitti. "The Bruhat order on the involutions of the symmetric group". In: J. Algebraic Combin. 20.3 (2004), pp. 243-261.
[5] Toshihiko Matsuki and Toshio Ōshima. "Embeddings of discrete series into principal series". In: vol. 82. Progr. Math. 1990, pp. 147-175.
[6] Benjamin J. Wyser. "The Bruhat order on clans". In: J. Algebraic Combin. 44.3 (2016), pp. 495-517.

7] Atsuko Yamamoto. "Orbits in the flag variety and images of the momen map for classical groups. I". In: Represent. Theory 1 (1997)

