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Abstract

In this investigation, based on [2], we show that the Bruhat order
on the sects of a symmetric variety of type AII I are lexicographically
shellable. Our proof proceeds from a description of these posets as
rook placements in a partition shape which fits in a p × q rectangle.
This allows us to extend an EL-labeling of the rook monoid given by
Can [3] to an arbitrary sect. As a special case, our result implies that
the Bruhat order on matrix Schubert varieties is lexicographically
shellable.

Clans, Sects, and Rooks

Definition 1. Let p and q be two positive integers such that p + q =
n. A (p, q)-clan is an ordered set of n symbols c1 . . . cn such that:
• Each symbol ci is either “+′′, “−′′, or a natural number.
• If ci ∈ N, then there is a unique index j ̸= i such that ci = cj.
• The difference between the numbers of “+′′ and “−′′ symbols in

the clan is equal to p− q. If q > p, then we have q− p more minus
signs than plus signs.

E.g. γ1 = +1212− and γ2 = +1717− are equivalent (3, 3)-clans.
The set of all (p, q)-clans is denoted by Cp,q.
Matsuki-Oshima-Yamamoto [5, 7]. The orbits of GLp(C) ×
GLq(C) := L on GLp+q(C)/ B, where B is the Borel subgroup
of GLp+q(C) := G, are parameterized by Cp,q. The Bruhat poset
(Cp,q,≤) is defined by

γ1 ≤ γ2 ⇐⇒ Oγ1 ⊆ Oγ2

for γ1, γ2 in Cp,q corresponding to B-orbits Oγ1 and Oγ2 respectively.
The matchless (base clan) clans τγ, consisting only “+′′ and “ − ”,
correspond to min-dimensional orbits.
Definition 2. Let Cλ denote the Schubert cell of G / P associated to
the partition λ ∈ ([p+q]

p ) where P is the parabolic subgroup. Then the
sect Cλ

p,q is the collection of clans γ whose corresponding orbits sat-
isfy π(Oγ) = Cλ where π : G /L → G / P is the natural projection
map.
E.g.1. The Bruhat poset of C2,2 can be depicted below by using
Wyser’s characterization [6]. Also, the sect Cλ

2,2 for λ = (2, 2) is
colored by green.
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Bingham-Can[1]. Matchless clans are in one-to-one correspon-
dence with sects by drawing a lattice path from the origin to
the point (q, p) where “−′′ correspond to “east” steps and “+′′to
“north” steps. The partition λ then consists of the boxes that lie
inside the rectangle and weakly above this lattice path.

Definition 3. Let R(λ) denote the set of rook placements of partition λ. For
ρ, π in R(λ), we say ρ ≤ π ⇐⇒ rtρ ≤ rtπ where R(λ) rt−→ N is a labeling
of the boxes of [λ] by the number of rooks weakly northwest of each box.

γ = 1+−221 τγ = −+−−++
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Bingham-Can[1]. There is an isomorphism between the posets R(λ) and
Cλ

p,q as follows
• Bring down the clan γ = c1 · · · cp+q to the base clan τγ by replacing ci by a

“−′′ and cj by a “+′′ whenever ci = cj ∈ N with i < j for every i, j.
• Let the positions of the − symbols in τγ be i1, . . . , iq and the positions of

the + symbols be j1, . . . , jp from left to right.
• For each pair cik = cjl ∈ N in γ, we place a rook in the square with

northeast corner (k, l).
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EL-shellability of Cλ
3,3 for

λ = (3, 2, 1) with the
unique maximal increasing

chain highlighted in red.

Definition 4. The partial permutation associated to a clan γ = c1 · · · cp+q in
Cp,q is the function ϕγ : [q] → [p] ∪ {0} defined algorithmically as follows.
Label the positions of the “−′′ in τγ by i1, . . . , iq and the positions of the “+′′

as j1, . . . , jp in ascending order. Then we read the symbols c1 · · · cp+q left to
right and construct ϕγ as follows.
1. If cis = cjt ∈ N in γ, then ϕγ(s) = t. These are the rooks that are placed

within the associated partition λ under B-C [1].
2. After the previous step, we modify γ by iteratively replacing all 1212

patterns by 1221 patterns to obtain a clan which we call γ̂0 ∈ Cλ
p,q and

which has symbols ĉ1 · · · ĉp+q.
3. For each simple, innermost 1+−1 pattern in γ̂0 of the form ĉaĉjl ĉikĉb, set

ϕγ(k) = l. Then delete all of the symbols involved in any simple, inner-
most 1+−1 pattern to obtain a new clan γ̂1 which inherits position labels
from γ̂0.

4. Repeat the procedure of the previous step on γ̂1, and so on until we obtain
a clan γ̂s which is free of 1+−1 patterns.

5. Once the clan γ̂s which is free of 1+−1 patterns is obtained, for any k ∈ [q]
which has not yet been assigned we let ϕγ(k) = 0.

We will represent ϕγ using one-line notation. For instance, the partial per-
mutation associated to the clan γ = 1+−221 is ϕγ = (3, 1, 2).

Shelling

Definition 5. Let C(P) := {(u, v) ∈ P ×P | u ⋖ v} denote the set
of covering relations in a poset P . An EL-labelling on (P ,<) is a
map η : C(P) −→ (Λ,≤LEX) holding the following:
• For each u < v, there is a unique saturated chain u ⋖ u1 ⋖ · · ·⋖

uk ⋖ v with η(u, u1) ≤ η(u1, u2) ≤ · · · ≤ η(uk, v).
• The above label sequence is lexicographically smaller than the

label sequence for every other saturated chain from u to v.
E.g.2. Let Rn denote the rook monoid. Choose x = (a1, ..., an), y =
(a1, ..., an) ∈ Rn.
• (Type 1) Assume that ak = bk for all k = {1, ..., î, ..., n} and that

ai < bi. Then, y covers x if and only if either
⋆ 0 = ai, and there exits a sequence {1 ≤ j1 < · · · < js < i} such

that aj1, ..., ajs is equal to {1, ..., s}, bi = s + 1, and bj = aj > 0 for
j > i, or

⋆ 0 < ai, and there exits a sequence 1 ≤ j1 < · · · < js < i such
that {aj1, ..., ajs} is equal to {ai + 1, ..., ai + s}, bi = s + 1, and
bi = ai + s + 1 > 0.

• (Type 2) Suppose that aj = bi, ai = bj, and aj < ai for i < j.
Moreover, suppose that for all k ∈ {1, ..., î, ..., ĵ, ..., n}, ak = bk.
Then, x ⋖ y if and only if either aj < as, or as < ai for s =
i + 1, ..., j − 1.

Mahir proved in [3] that Rn is lexicographic shellable by deploying

C(Rn) Λ := [n]× [n]

(x, y) η(x, y) :=

{
(ai, bi) if x ⋖ y by type 1
(ai, aj) if x ⋖ y by type 2

η

Bingham-Diaz [2]. The restriction of Bruhat order on
GLp+q /(GLp ×GLq) to any sect Cλ

p,q gives an EL-shellable poset.
In particular, the Bruhat order on matrix Schubert varieties is
EL-shellable.

The coverings and labeling for Cλ
p,q are rooted in the concepts devel-

oped by Incitti, Wyser, and Can in their works [4, 6, 3]. For exact
details, please refer to our in-depth exploration in [2]...
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