

TULANE UNIVERSITY SCHOOL of SCIENCE & ENGINEERING

Abstract

In this investigation, based on [2], we show that the Bruhat order on the **sects** of a *symmetric variety of type AIII* are **lexicographically shellable**. Our proof proceeds from a description of these posets as rook placements in a partition shape which fits in a $p \times q$ rectangle. This allows us to extend an *EL*-labeling of the *rook monoid* given by Can [3] to an arbitrary sect. As a special case, our result implies that the Bruhat order on *matrix Schubert* varieties is lexicographically shellable.

Clans, Sects, and Rooks

Definition 1. Let *p* and *q* be two positive integers such that p + q =*n*. A (p,q)-clan is an ordered set of *n* symbols $c_1 \dots c_n$ such that:

- Each symbol c_i is either "+", "-", or a natural number.
- If $c_i \in \mathbb{N}$, then there is a unique index $j \neq i$ such that $c_i = c_j$.
- The difference between the numbers of "+" and "-" symbols in the clan is equal to p - q. If q > p, then we have q - p more minus signs than plus signs.

E.g. $\gamma_1 = +1212 - \text{ and } \gamma_2 = +1717 - \text{ are equivalent } (3,3) - \text{clans.}$ The set of all (p,q)-clans is denoted by $C_{p,q}$.

Matsuki-Oshima-Yamamoto [5, 7]. The orbits of $GL_p(\mathbb{C}) \times$ $GL_q(\mathbb{C}) := \mathbf{L}$ on $GL_{p+q}(\mathbb{C}) / \mathbf{B}$, where **B** is the *Borel* subgroup of $GL_{p+q}(\mathbb{C}) := \mathbf{G}$, are parameterized by $\mathcal{C}_{p,q}$. The Bruhat poset $(\mathcal{C}_{p,q},\leq)$ is defined by

$$\gamma_1 \leq \gamma_2 \iff \mathcal{O}_{\gamma_1} \subseteq \overline{\mathcal{O}_{\gamma_2}}$$

for γ_1, γ_2 in $\mathcal{C}_{p,q}$ corresponding to **B**-orbits \mathcal{O}_{γ_1} and \mathcal{O}_{γ_2} respectively. The matchless (base clan) clans τ_{γ} , consisting only "+" and " – ", correspond to min-dimensional orbits.

Definition 2. Let C_{λ} denote the *Schubert cell* of **G** / **P** associated to the partition $\lambda \in {[p+q] \choose n}$ where **P** is the *parabolic* subgroup. Then the sect $C_{p,q}^{\lambda}$ is the collection of clans γ whose corresponding orbits satisfy $\pi(\mathcal{O}_{\gamma}) = C_{\lambda}$ where $\pi: \mathbf{G} / \mathbf{L} \to \mathbf{G} / \mathbf{P}$ is the natural projection map.

E.g.1. The Bruhat poset of $C_{2,2}$ can be depicted below by using Wyser's characterization [6]. Also, the sect $C_{2,2}^{\lambda}$ for $\lambda = (2,2)$ is colored by green.

Bingham-Can[1]. Matchless clans are in one-to-one correspondence with sects by drawing a lattice path from the origin to the point (q, p) where "-" correspond to "east" steps and "+"to "north" steps. The partition λ then consists of the boxes that lie inside the rectangle and weakly above this lattice path.

Lexicographic shellability of Sects

Aram Bingham[†], Néstor F. Díaz Morera[‡]

[†]arambingham@mines.edu, [‡]ndiazmorera@tulane.edu

Definition 3. Let $R(\lambda)$ denote the set of **rook placements** of partition λ . For ρ, π in $R(\lambda)$, we say $\rho \leq \pi \iff rt_{\rho} \leq rt_{\pi}$ where $R(\lambda) \xrightarrow{rt} \mathbb{N}$ is a labeling of the boxes of $[\lambda]$ by the number of rooks weakly northwest of each box.

Bingham-Can[1]. There is an isomorphism between the posets $R(\lambda)$ and $\mathcal{C}_{p,q}^{\lambda}$ as follows

- Bring down the clan $\gamma = c_1 \cdots c_{p+q}$ to the base clan τ_{γ} by replacing c_i by a "-" and c_i by a "+" whenever $c_i = c_i \in \mathbb{N}$ with i < j for every i, j.
- Let the positions of the symbols in τ_{γ} be i_1, \ldots, i_q and the positions of the + symbols be j_1, \ldots, j_p from left to right.
- For each pair $c_{i_k} = c_{i_l} \in \mathbb{N}$ in γ , we place a rook in the square with northeast corner (k, l).

Definition 4. The **partial permutation** associated to a clan $\gamma = c_1 \cdots c_{p+q}$ in $\mathcal{C}_{p,q}$ is the function $\phi_{\gamma} : [q] \to [p] \cup \{0\}$ defined algorithmically as follows. Label the positions of the "-" in τ_{γ} by i_1, \ldots, i_q and the positions of the "+" as j_1, \ldots, j_p in ascending order. Then we read the symbols $c_1 \cdots c_{p+q}$ left to right and construct ϕ_{γ} as follows.

- 1. If $c_{i_s} = c_{i_t} \in \mathbb{N}$ in γ , then $\phi_{\gamma}(s) = t$. These are the rooks that are placed within the associated partition λ under B-C [1].
- 2. After the previous step, we modify γ by iteratively replacing all 1212 patterns by 1221 patterns to obtain a clan which we call $\hat{\gamma}_0 \in C_{p,a}^{\lambda}$ and which has symbols $\hat{c}_1 \cdots \hat{c}_{p+q}$.
- 3. For each simple, innermost 1+-1 pattern in $\hat{\gamma}_0$ of the form $\hat{c}_a \hat{c}_{j_l} \hat{c}_{i_k} \hat{c}_b$, set $\phi_{\gamma}(k) = l$. Then delete all of the symbols involved in any simple, innermost 1+-1 pattern to obtain a new clan $\hat{\gamma}_1$ which inherits position labels from $\hat{\gamma}_0$.
- 4. Repeat the procedure of the previous step on $\hat{\gamma}_1$, and so on until we obtain a clan $\hat{\gamma}_s$ which is free of 1+-1 patterns.
- 5. Once the clan $\hat{\gamma}_s$ which is free of 1+-1 patterns is obtained, for any $k \in [q]$ which has not yet been assigned we let $\phi_{\gamma}(k) = 0$.

We will represent ϕ_{γ} using one-line notation. For instance, the partial permutation associated to the clan $\gamma = 1 + -221$ is $\phi_{\gamma} = (3, 1, 2)$.

$$\mapsto \overbrace{[]}^{\square} \phi_{\gamma} = (3, 1, 2)$$

unique maximal increasing chain highlighted in red.

| (2,3) |(0,2)|

Shelling

Definition 5. Let $C(\mathcal{P}) := \{(u, v) \in \mathcal{P} \times \mathcal{P} \mid u \leq v\}$ denote the set of *covering relations* in a poset \mathcal{P} . An *EL*-labelling on $(\mathcal{P}, <)$ is a map $\eta : C(\mathcal{P}) \to (\Lambda, \leq_{\text{LEX}})$ holding the following: • For each u < v, there is a unique saturated chain $u < u_1 < \cdots < v_n$

 $u_k \lessdot v \text{ with } \eta(u, u_1) \leq \eta(u_1, u_2) \leq \cdots \leq \eta(u_k, v).$

label sequence for every other saturated chain from *u* to *v*.

E.g.2. Let \mathcal{R}_n denote the rook monoid. Choose $x = (a_1, ..., a_n), y = (a_1, ..., a_n)$ $(a_1,\ldots,a_n)\in\mathcal{R}_n.$

- (Type 1) Assume that $a_k = b_k$ for all $k = \{1, ..., \hat{i}, ..., n\}$ and that $a_i < b_i$. Then, *y* covers *x* if and only if either
- $\star 0 = a_i$, and there exits a sequence $\{1 \le j_1 < \cdots < j_s < i\}$ such that $a_{i_1}, ..., a_{i_s}$ is equal to $\{1, ..., s\}, b_i = s + 1$, and $b_i = a_i > 0$ for j > i, or
- $\star 0 < a_i$, and there exits a sequence $1 \leq j_1 < \cdots < j_s < i$ such that $\{a_{i_1}, ..., a_{i_s}\}$ is equal to $\{a_i + 1, ..., a_i + s\}$, $b_i = s + 1$, and $b_i = a_i + s + 1 > 0.$
- (Type 2) Suppose that $a_i = b_i, a_i = b_j$, and $a_j < a_i$ for i < j. Moreover, suppose that for all $k \in \{1, ..., \hat{i}, ..., \hat{j}, ..., n\}$, $a_k = b_k$. Then, $x \leq y$ if and only if either $a_i < a_s$, or $a_s < a_i$ for s =i + 1, ..., j - 1.

Mahir proved in [3] that \mathcal{R}_n is lexicographic shellable by deploying $= [n] \times [n]$

$$C(\mathcal{R}_n) \longrightarrow \eta \longrightarrow \Lambda :=$$
$$(x, y) \longmapsto \eta(x, y) := \begin{cases} (a_i, b_i) \\ (a_i, b_i) \end{cases}$$

Bingham-Diaz [2]. $\operatorname{GL}_{p+q}/(\operatorname{GL}_p \times \operatorname{GL}_q)$ to any sect $\mathcal{C}_{p,q}^{\lambda}$ gives an *EL*-shellable poset. In particular, the Bruhat order on matrix Schubert varieties is *EL*-shellable.

The *coverings* and *labeling* for $C_{p,q}^{\lambda}$ are rooted in the concepts developed by Incitti, Wyser, and Can in their works [4, 6, 3]. For exact details, please refer to our in-depth exploration in [2]...

References

[1] Aram Bingham and Mahir Bilen Can. "Sects". In: J. Algebra 560 (2020), pp. 192–218. [2] Aram Bingham and Nestor Diaz Morera. "Lexicographic shellability of sects". In: (2023). arXiv: 2312.15093 [math.CO]. [3] Mahir Bilen Can. "The rook monoid is lexicographically shellable". In: *European J. Combin.* 81 (2019), pp. 265–275. [4] Federico Incitti. "The Bruhat order on the involutions of the symmetric group". In: J. Algebraic Combin. 20.3 (2004), pp. 243–261. [5] Toshihiko Matsuki and Toshio Ōshima. "Embeddings of discrete series into principal series". In: vol. 82. Progr. Math. 1990, pp. 147–175. [6] Benjamin J. Wyser. "The Bruhat order on clans". In: J. Algebraic Combin. 44.3 (2016), pp. 495–517. [7] Atsuko Yamamoto. "Orbits in the flag variety and images of the moment

map for classical groups. I". In: Represent. Theory 1 (1997).

• The above label sequence is lexicographically *smaller* than the

 b_i) if $x \lt y$ by type 1 (a_i, a_j) if $x \lt y$ by type 2

The restriction of Bruhat order on