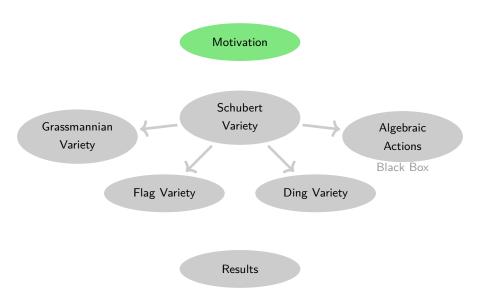
Ding and Schubert Varieties

Néstor F. Díaz Morera

Tulane University Graduate Colloquium

New Orleans, LA April 20, 2022

Outline



The Stem \rightsquigarrow combinatorics

 A partition of a number n is a non-increasing sequence of non-negative integer λ = (λ₁ ≥ λ₂ ≥ · · · ≥ λ_d) such that

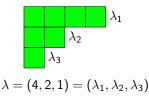
$$n = \sum \lambda_i := |\lambda|, \quad \ell(\lambda) := |\lambda_i : \lambda_i \neq 0| \rightsquigarrow$$
 length

• e.g. $7 = \cdots = 4 + 2 + 1 = \cdots$, $\lambda = (4, 2, 1) \rightsquigarrow \ell(\lambda) = 3$ • The diagram of λ

$$\mathsf{dg}(\lambda) := \{(i,j) \in \mathbb{N}^2 \mid 1 \leq i \leq d, \quad 1 \leq j \leq \lambda_i\}$$

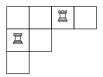
• The Ferrer board F_{λ} of a partition λ is the left-aligned partial grid of boxes in which the *i*th row from the top has λ_i boxes.

e.g.



• A placement of d rooks on a given F_{λ} is a subset of d squares in F_{λ} .

A non-attacking placement of *d* rooks on F_{λ} is a subset of *d* squares in F_{λ} such no two squares lie in the same row or column.



Non-attacking placement on F_{λ}

• Let $r_d(\lambda)$ be the number of non-attacking placements of d rooks on F_{λ} . The rook polynomial of λ is

$$R_{\lambda}(x) := \sum_{d=0}^{n} r_d(\lambda) x^k$$

Two partiions λ and ν are rook-equivalence if the have the same rook polynomial i.e., r_d(λ) = r_d(ν) for all d ≥ 0.

- Since $R_{(2,2)}(x) = 2x^2 + 4x + 1 = R_{(3,1)}(x) = R_{(2,1,1)}(x)$,
 - Kaplansky & Riordan (1946) considered the problem of when F_{λ} and F_{ν} are rook-equivalent.
- Garcia & Remmel (1984) defined a *q*-rook polynomial $R_d(F_{\lambda}, q)$ that *q*-count the *d*-rook placements on F_{λ} by a certain *inversion* statistic generalizing **inversions** of permutations.
 - ▶ They showed *q*-rook equivalence is the same as that a rook equivalence.
 - If $\lambda_i \geq i$, they came out with

$$R_n(F_{\lambda},q) = \prod_{i=1}^n [\lambda_i - i + 1]_q, \qquad [m]_q := \frac{q^m - 1}{q - 1}.$$
(1)

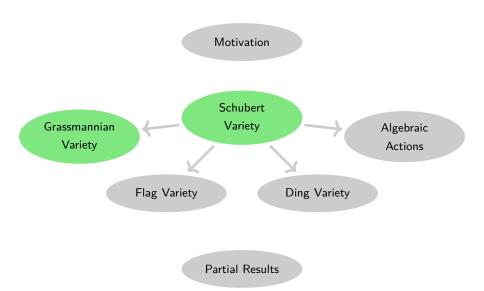
\rightsquigarrow Homogeneous Spaces

- *K. Ding (2001)* depicted (1) as the Poincaré series for certain algebraic variety X_{λ} .
- X_{λ} is a smooth Schubert variety inside the partial flag variety X_{N^n} where N^n still stands for the board with *n* rows and *N* columns.
- The Schubert varieties popping up this way are those of the form X_w where w is a 312-avoiding permutation.
 - Likewise, the fundamental cohomology class [X_w] is performed by a Schubert polynomial indexed by a dominant or 123-avoiding permutation.

Proposition (Can-D)

The number of 312-avoiding permutations of $\{1, ..., n\}$ whose associated Schubert variety is a toric variety is 2^{n-1} .

Outline



Main Characters \rightsquigarrow 15th Hilbert's problem

• Let V be a vector space over **k**. The Grassmannian variety is

 $Gr(d, n) := \{ W \subset V : W \text{ linear subspace and } dim(W) = d \}.$

e.g. Gr(2,4) i.e. $W = span(w_1, w_2)$ and $span(e_1, e_2, e_3, e_4) = \mathbf{k}^4$.

$$W \in Gr(2,4) \iff W = \operatorname{span}\left\{\sum_{j=1}^{4}a_{1j}e_j,\sum_{j=1}^{4}a_{2j}e_j
ight\} \in Gr(2,4)$$

 $\iff \text{rows of } M_W \text{ are independent vectors in } \mathbf{k}^4$ $\iff \text{some } 2 \times 2 \text{ minors of } M_W \text{ is } \mathbf{NOT } \text{ zero}$

 $\iff \underbrace{p_{j_1 j_2}(M_W)}_{\text{Plücker relations}} := \det[a_{p, j_q}]_{1 \le p, q \le 2} \neq 0 \text{ for some } j_1 < j_2$

$$\rightsquigarrow w_1 \wedge w_2 = \sum_{j_1 < j_2} p_{j_1 j_2}(M_W) e_{j_1} \wedge e_{j_2}.$$

Proposition (Plücker embedding)

$$\operatorname{Gr}(d,n) \xrightarrow{\psi} \mathbb{P}^{\binom{n}{d}-1} = \mathbb{P}\left(\bigwedge^{k} \mathbf{k}^{n}\right)$$

$$\operatorname{Span}(v_{1},...,v_{d}) \longmapsto [v_{1} \wedge \cdots \wedge v_{d}]$$

- ψ is injective.
- im Gr(d, n) is closed in $\mathbb{P}(\bigwedge^k \mathbf{k}^n)$.

$$\mathbf{k}^n \stackrel{h_\omega}{\longrightarrow} \Lambda^{d+1} \mathbf{k}^n$$
, $\Rightarrow \dim(\operatorname{im} h_\omega) \ge n - d$
 $v \longmapsto v \wedge \omega$

e.g. Gr(2,4) → 3 × 3 minors of [h_ω] ∈ Mat₄ → 16 cubic equations!
Gr(d, n) can be covered by A^{d(n-d)} since

$$\mathbb{A}^{d(n-d)} \stackrel{\phi}{\longrightarrow} V_I; C \longmapsto \mathsf{RowSpan}[I_d \mid C]$$

- Gr(d, n) is irreducible and dim(Gr(d, n)) = d(n d)
- $Gr(2,4) = V(a_{12}a_{34} a_{13}a_{24} + a_{14}a_{23})$

Example: Schubert Cells

$$W := \operatorname{span} \begin{cases} -e_2 - 3e_3 - e_4 + 6e_5 - 4e_6 + 5e_7\\ e_2 + 3e_3 + 2e_4 - 7e_5 + 6e_6 - 5e_7\\ 2e_4 - 2e_5 + 4e_6 - 2e_7 \end{cases} \in \operatorname{Gr}(3,7)$$

$$M_W := \begin{pmatrix} 0 & -1 & -3 & -1 & 6 & -4 & 6\\ 0 & 1 & 3 & 2 & -7 & 6 & -5\\ 0 & 0 & 0 & 2 & -2 & 4 & -2 \end{pmatrix}$$

$$\begin{pmatrix} 1/2 & 1/2 & -1/4\\ 1/2 & 1/2 & 1/4\\ 3/2 & 5/2 & -7/4 \end{pmatrix} M_W = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 1\\ 0 & 0 & 0 & 1 & -1 & 2 & 0\\ 0 & 1 & 3 & 0 & -5 & 2 & 0 \end{pmatrix}$$

$$M_W' := \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 1\\ 0 & 0 & 0 & 1 & * & * & 0\\ 0 & 1 & * & 0 & * & * & 0 \end{pmatrix} \rightsquigarrow \operatorname{Schubert Cell}.$$

Recipe: cut out the $d \times d$ staircase from the upper left corner of the matrix, and let λ_i be the distance from the edge of the staircase to the 1 in row *i*.

Schubert Cell X_{λ}

For a partition λ contained in a rectangle d(n - d) is the set of points of Gr(d, n) whose row echelon matrix has corresponding partition:

$$X_{\lambda} := \left\{ W \in \mathsf{Gr}(d, n) \mid \dim(W \cap \langle e_1, ..., e_r \rangle) = i, \begin{array}{c} n - d + i - \lambda_i \\ \leq r \leq \\ n - d + i - \lambda_{i+1} \end{array} \right\}$$

- The numbers n d + i λ_i are the *positions* of the 1's in the matrix counted from the right.
- Since each * can be any complex number, we have $X_{\lambda} = \mathbb{A}^{d(n-k)-|\lambda|}$ as a set, and so dim $X_{\lambda} = d(n-d) |\lambda|$.
 - In particular, dim Gr(d, n) = d(n d).
- The *d*-subsets of [n] is in bijection with partitions whose Ferrer diagram is contained in the *d*(*n d*) rectangle.

Closed subsets: Schubert Variety

The Schubert Variety is the closure of X_{λ} i.e.,

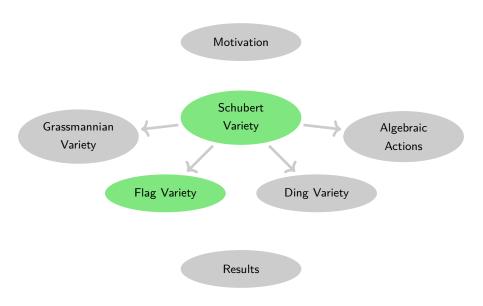
 $\overline{X_{\lambda}} := \{ W \in \mathsf{Gr}(d, n) \mid \dim(V \cap \langle e_1, ..., e_{n-d+1-\lambda_i}) \geq i \}.$

e.g. In Gr(2, 4),

$$\overline{X}_{\{1,3\}} = \overline{X}_{\text{[1,3]}} = \overline{\left\{ \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & * & 0 \end{pmatrix} \right\}} = X_{(2,2)} \sqcup X_{(2,1)}.$$

- Every Schubert variety is a disjoint union of Schubert cells.
- How many lines intersect four lines in \mathbb{R}^3 ?
 - ▶ \rightsquigarrow Given a line in \mathbb{R}^3 , the family of lines intersecting it can be seen Gr(2, 4) as the Schubert variety $\overline{X}_{\{2,4\}}$
- How many points W ∈ Gr(2, 4) are in the intersection of 4 copies of the Schubert variety X
 _(2,1) each w.r.t a different basis?

Outline



Flag Variety

- Let V be a vector space over **k** with dim_k V = n and let $1 \le \ell_1 < \cdots < \ell_d \le n$. A flag of type (ℓ_1, \dots, ℓ_d) in V is a sequence of linear subspaces $V_1 \subseteq V_2 \subseteq \cdots \subseteq V_d \subseteq V$, where dim_k $(V_i) = \ell_i$.
 - ► A complete flag is a flag of type (1, 2, ..., n).
- The flag variety ${\mathcal F}_{\ell_1,\ldots,\ell_d}(V)$ parametrizes flags in V i.e., it is the set

$$\mathcal{F}_{\ell_1,\ldots,\ell_d}(V) := \{(V_1,\ldots,V_d) \in \operatorname{Gr}(\ell_1,V) \times \cdots \times \operatorname{Gr}(\ell_d,V) \mid V_1 \subseteq \cdots \subseteq V_d\}.$$

In particular, the complete flag variety $\mathcal{F}_{1,...,n}(V) := \mathcal{F}_{\bullet}(V)$ parametrizes complete flags in V.

Proposition

The subset $\mathcal{F}_{\ell_1,\ldots,\ell_d}(V)$ of $Gr(\ell_1, V) \times \cdots \times Gr(\ell_d, V)$ is closed and hence $\mathcal{F}_{\ell_1,\ldots,\ell_d}(V)$ is a projective variety.

- For every $(\ell_1, ..., \ell_d)$, the flag variety is irreducible.
- Its dimension is given by

$$\sum_{i=1}^{d} \ell_i (\ell_{i+1} - \ell_i), \qquad \ell_{d+1} = n.$$

For
$$\mathcal{F}_{ullet}(V)$$
, its dimension is $rac{n(n-1)}{2}$

Example: more tools from combinatorics

•
$$\mathcal{F}_{\bullet} = \operatorname{span}\{2e_2 + 3e_3, e_1 + e_2 + 4e_3, e_1 + 2e_2 - 3e_3\}$$

 $\iff \begin{pmatrix} 1/2 & 0 & 0 \\ -1/2 & 1 & 0 \\ 1/17 & 2/17 & -2/17 \end{pmatrix} \begin{pmatrix} 0 & 2 & 3 \\ 1 & 1 & 4 \\ 1 & 2 & -3 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 3/2 \\ 1 & 0 & 5/2 \\ 0 & 0 & 1 \end{pmatrix}$
 $\operatorname{span}\{e_2 + 3/2e_3, e_1 + 5/2e_3, e_3\} \rightsquigarrow \text{ canonical form}.$

- ► The canonical form determines a permutation matrix: the position of the leading 1's. This permutation dictates the position of the flag *F*_• w.r.t the reference flag *E*_• := ⟨*e*₁, *e*₂, *e*₃⟩.
- Ways of seeing permutations:

$$\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = 231$$

Schubert Cells in $\mathcal{F}_n(\mathbf{k})$

Let $w \in S_n$ be a permutation. The Schubert Cell of w is defined by

 $X_w := \{W_\bullet \in \mathcal{F}_n : \dim(W_p \cap E_q) = \#\{i \le p : w(i) \le q\} \text{for all } p, q\}$

where E_q is the standard flag generated by the unit vectors e_{n+1-i} .

- The dim (X_w) is the # of *'s in its matrix.
 - The max # of *'s occurs when $w_0 = n(n-1)\cdots 321 \rightsquigarrow \dim(X_{w_0}) = n(n-1)/2.$
- For any $w \in S_n$, $inv(w) = \#\{(i,j) : i < j \text{ and } w(i) > w(j)\}.$

• The # of *'s in X_w is the (inversion number) inv(w)

• Define $s_1, ..., s_{n-1} \in S_n$ to be the *adjacent transpositions* in S_n . Then the length of w, $\ell(w)$ is the smallest number k for which there exists a decomposition $w = s_{i_1} \cdots s_{i_k}$.

•
$$\ell(w) = inv(w)$$
.

Keeping the example...

$$\mathcal{F}_{\bullet} := \begin{pmatrix} 0 & 1 & 3/2 \\ 1 & 0 & 5/2 \\ 0 & 0 & 1 \end{pmatrix} \in X_{213} = \left\{ \begin{pmatrix} 0 & 1 & * \\ 1 & 0 & * \\ 0 & 0 & 1 \end{pmatrix} : * \in \mathbb{C} \right\}$$

•
$$\dim(X_{231}) = 2 = \operatorname{inv}(231).$$

• $X_w = w \cdot B$ is a *B*-orbit using the right *B* action i.e.,

$$\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} b_{1,3} & 0 & 0 \\ b_{2,3} & b_{2,2} & 0 \\ b_{3,3} & b_{3,2} & b_{3,1} \end{pmatrix} = \begin{pmatrix} b_{2,3} & b_{2,2} & 0 \\ b_{1,3} & 0 & 0 \\ b_{3,3} & b_{3,2} & b_{3,1} \end{pmatrix}$$

Schubert Variety

Let $w \in S_n$ be a permutation. The Schubert Variety of w is defined by $\overline{X_w} := \{W_{\bullet} \in \mathcal{F}_n : \dim(W_p \cap E_q) \ge \#\{i \le p : w(i) \le q\} \text{ for all } p, q\}$

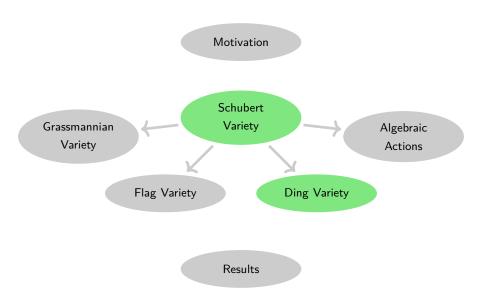
The closure relation on Schubert varieties defines a cool partial order

$$\overline{X_w} = \bigsqcup_{v \le w} X_v \rightsquigarrow (\text{Bruhat order})$$

where $v \leq w \iff$ for every representation of w as a product of $\ell(w)$ transpositions s_i , one can remove $\ell(w) - \ell(v)$ of the transpositions to obtain a representation of v as a subword in the same relative order.

▶ $w = 45132 = s_2 s_3 s_2 s_1 s_4 s_3 s_2$ and this contains $s_3 s_2 s_3 = 14325$ as a nonconsecutive subword and so $14325 \le 45132$.

Outline



Ding's Variety

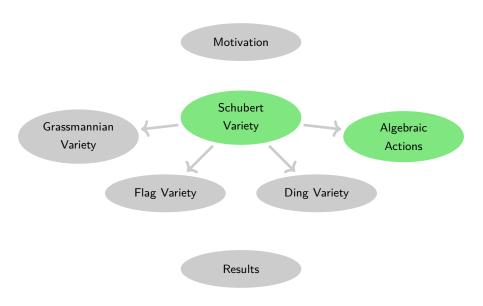
Let $\lambda = (0 \leq \lambda_1 \leq \cdots \leq \lambda_d)$ be a partition.

$$D_{\lambda} := \{ V_{\bullet} \in \mathcal{F}_{(1,...,d)} \mid V_{i} \subset \mathbb{C}^{\lambda_{i}} \} \rightsquigarrow \text{Ding variety}$$
$$X_{w} := \left\{ V_{\bullet} \in \mathcal{F}_{(1,...,d)} \mid \dim(V_{i} \cap E_{j}) \geq \#\{k \leq i : w_{k} \leq j\} \right\}$$

 D_{λ} coincides with $X_w \subset \mathcal{F}_{(1,...,d)}(V)$, where w is the unique permutation given by $w_i = \max(\{1, ..., \lambda_i\} \setminus \{w_1, ..., w_{i-1}\})$.

- If d = n, then w identifies the maximal rook placement on the Ferrers board B_λ.
 - ► For each *i*, place a rook in row *i* and column *w_i*, where *w_i* is the rightmost square in row *i* whose column doesn't contain a rook.
- Permutation *w* obtained this way are exactly those which are **312-avoiding**.
 - There do not exist i, j, k for which i < j < k and $w_i > w_k > w_j$.

Outline



Actions

- A G-variety is an affine variety X endowed with an action of the algebraic group G, G × X → X which is a morphism. (g,x) → g ⋅ x

 x ∈ X is called fixed point if gx = x for all g ∈ G.
 - $X \in X$ is called inxed point if gx = x for all • $X^G := \{x \in X : x \text{ fixed point}\}$
- For $x \in X$, the orbit of x is $Gx := \{gx : g \in G\} \subset X$.
 - The orbit map is $\alpha_x : G \to X; g \mapsto gx$.
- The stabilizer of x is $\operatorname{Stab}_G(x) = G_x := \{g \in G : gx = x\}.$
 - ▶ For any $Y \subset X$, we define $\text{Stab}_G(Y) := \{g \in G : gy = y, \forall y \in Y\}.$
- For two G-varieties X, Y a morphism φ : X → Y is said to be
 G-equivariant whether φ(gx) = gφ(x) for all g ∈ G and x ∈ X.

Homogeneous Spaces

Proposition

- Let X be a G-variety.
 - X^G is a closed subset in X.
 - G_x and $\operatorname{Stab}_G(Y)$ are closed subgroups of G.
 - For any $x \in X$ the orbit Gx is open in its closure \overline{Gx} .
 - If $Y \subset X$ is closed, the normalizer $N_G(Y)$ is closed subgroup of G.
 - A variety X is homogeneous whether it is equipped with a transitive action of an alg. group G.
 - A homogeneous space is (X, x) where X is homogeneous and x ∈ X is called base point.
 - Since α_x⁻¹(hx) = hG_x ⇒ dim Gx = dim Gx = dim G − dim G_x
 Gx contains a closed orbit.

Example

$$\operatorname{Stab}_{\operatorname{GL}_n}(\langle e_1, \dots, e_d \rangle) := P = \left\{ \begin{pmatrix} a_{1,1} & \cdots & a_{1,d} & a_{1,d+1} & \cdots & a_{1,n} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ a_{d,1} & \cdots & a_{d,d} & a_{d,d+1} & \cdots & a_{d,n} \\ 0 & \cdots & 0 & a_{d+1,d+1} & \cdots & a_{d+1,n} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & a_{n,d+1} & \cdots & a_{n,n} \end{pmatrix} \right\}$$

- *P* → maximal parabolic subgroup of GL_n, and Gr(d, n) is an homogeneous space GL_n/P.
 - dim(Gr(d, n)) = dim GL_n dim P = d(n d)

Pick $E_I = \langle e_{i_1}, ..., e_{i_d} \rangle \in Gr(d, n)$ where $1 \le i_1 < \cdots < i_d \le n$.

• The E_I are the T-fixed points in Gr(d, n), where

$$T_n = \left\{ \begin{pmatrix} a_{1,1} & 0 & \cdots & 0 \\ 0 & a_{2,2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{n,n} \end{pmatrix} \right\} \rightsquigarrow \text{ maximal torus of } \operatorname{GL}_n$$

• Gr(d, n) is the disjoint union if the orbits BE_I , where

$$B_n := \left\{ \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ 0 & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{n,n} \end{pmatrix} \right\} \rightsquigarrow \text{Borel subgroup of } \operatorname{GL}_n$$

• The Schubert Cells in Gr(d, n) are the orbits $X_I := BE_I$ and the closure in Gr(d, n) of X_I is called Schubert variety $\overline{X_I}$.

Examples

$$\operatorname{GL}_n \times \mathcal{F}(\mathbb{C}^n) \xrightarrow{\alpha} \mathcal{F}(\mathbb{C}^n)$$
 is homogeneous.
 $(B,F) \longmapsto BF$

$$\mathsf{Stab}_{\mathsf{GL}_n}(E_1,...,E_d) := \overbrace{P_{\ell_1,...,\ell_d}(\mathbb{C})}^{\mathsf{Parabolic}} = \begin{pmatrix} A_1 & * & \cdots & * \\ 0 & A_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & * \\ 0 & \cdots & 0 & A_d \end{pmatrix},$$
$$A_i \in \mathsf{GL}_{d_i-d_{i-1}}$$

Hence,

$$\begin{split} & \operatorname{GL}_n/P_{\ell_1,...,\ell_d}(\mathbb{C}) \longrightarrow \mathcal{F}_{\ell_1,...,\ell_d}(V) \ & gP_{\ell_1,...,\ell_d}(\mathbb{C}) \longmapsto (gV_1,...,gV_d). \end{split}$$

The set of *T*-fixed points is identified with S_n. Namely, each w ∈ S_n corresponds to a coordinate flag

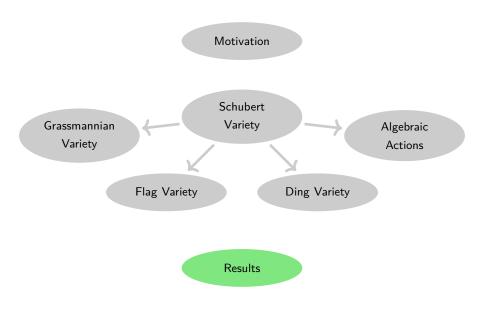
$$\{0\} \subset \langle e_{w(1)} \rangle \subset \langle e_{w(1)}, e_{w(2)} \rangle \subset \cdots \subset V_n = \mathbb{C}^n,$$

denotes as $E_w := wE$

- $S_n \cong N_G(T)/T \rightsquigarrow$ Weyl group, \mathcal{F}_n is the disjoint union of the orbits $X_w := BF_w = UF_w$ where $w \in S_n$.
- When $\overline{X_w}$, we acquire

$$\overline{X_w} = \bigsqcup_{v \in W, v \le w} X_v$$

Outline



Current work ...

Theorem (Karuppuchamy)

A Schubert variety X_w is a toric variety if and only if the Weyl group element w is a product of distinct simple reflections.

Theorem (Lakshmibai-Sandhya)

 X_w is non-singular if and only if w has no subsequence with the same relative order as 3412 and 4231.

Proposition (Can-D)

The number of 312-avoiding permutations of $\{1, ..., n\}$ whose associated Schubert variety is a toric variety is 2^{n-1} .

Classification: Schubert variety of complexity 0

Theorem

The following are equivalent

- (1) X_w is a toric variety i.e., of complexity 0.
- (2) X_w is a smooth toric variety.
- (3) w avoids the patterns 321 and 3412.
- (4) A reduced decomposition of w consists of distinct letters.
- (5) X_w is isomorphic to a **Bott-Samelson variety**.
- (6) The **Bruhat interval** [e, w] is isomorphic to $\mathfrak{B}_{\ell(w)}$ the **Boolean** algebra of rank $\ell(w)$.
- (7) The **Bruhat interval polytope** $Q_{e,w}$ is combinatorially equivalent to the $\ell(w)$ -dimensional cube.

Classification: Schubert variety of complexity 1

Theorem

For a permutation $w \in S_n$, the following are equivalent

- (1) X_w is smooth and of complexity 1.
- (2) w contains the pattern 321 exactly once and avoids the pattern 3412.
- (3) There exists a reduced decomposition of w containing $s_i s_{i+1} s_i$ as a factor and no other repetitions.
- (4) X_w is isomorphic to a **flag Bott-Samelson** variety $Z_{(w_1,...,w_r)}$ such that $r = \ell(w) 2$, $w_k = s_j s_{j+1} s_j$ for some $1 \le k \le r$, $w_i = s_j$, for $i \ne k$, and $j_1, ..., j_{k-1}, j_{k+1}, ..., j_r, j, j + 1$ are pairwise distinct.
- (5) The **Bruhat interval** [e, w] is isomorphic to $S_n \times \mathfrak{B}_{\ell(w)-3}$
- (6) The Bruhat interval polytope Q_{e,w} is combinatorially equivalent to the product of the hexagon and the cube I^{ℓ(w)-3}.

Thank You/Gracias!

"Combinatorics is the nanotechnology of mathematics" Sara Billey

Main references I

- M. Can, R. Hodges, V. Lakshmibai, Toroidal Schubert Varieties, 2020 https://doi.org/10.1007/s10468-019-09921-4
- M. Develin, J. Martin, V. Reiner, Canad. J. Math Vol. 59, 2007 Classification of Ding's Schubert Varieties: Finer Rook Equivalence
- F. Blute, M. Can, J. Haglund, J. Remmel, Rook Theory Notes, 2011 https://mathweb.ucsd.edu/~remmel/files/Book.pdf.
- Meinolf Geck, Oxford Graduate texts in Mathematics ,2014 An Introduction to Algebraic Geometry and Algebraic Groups
- 📎 D.A. Timashev, Springer, 2011

Homogeneous Spaces and Equivariant Embeddings