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The Stem ~~ combinatorics
@ A partition of a number n is a non-increasing sequence of

non-negative integer A = (A1 > A2 > --- > A\y) such that
n=> A=A, €A):=|\:)\#0|~ length

>Peg T=--=4+2+1=- A=(421)~{N) =3
@ The diagram of A

dg(\) ={(i,)) eN?|1<i<d, 1<j<\}

@ The Ferrer board F) of a partition A is the left-aligned partial grid

of boxes in which the it" row from the top has \; boxes.
> eg.
A1
A2
A3

A= (4a27 1) - (Ala)\Za)‘3)
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@ A placement of d rooks on a given F) is a subset of d squares in F).

A non-attacking placement of d rooks on F) is a subset of d
squares in Fy such no two squares lie in the same row or column.

'] |

)=¢

Non-attacking placement on F)

o Let rg(\) be the number of non-attacking placements of d rooks on
Fy. The rook polynomial of A is

n

Rin(x) = Z ra(M\)xk

d=0

@ Two partiions A and v are rook-equivalence if the have the same
rook polynomial i.e., ry(\) = rq(v) for all d > 0.
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[*] Since R(2’2)(X) = 2X2 + 4x + 1 = R(37]_)(X) = R(z’]_’]_)(X),
» Kaplansky & Riordan (1946) considered the problem of when F) and
F, are rook-equivalent.

o Garcia & Remmel (1984) defined a g-rook polynomial Ry(Fy, q)

that g-count the d-rook placements on Fy by a certain inversion
statistic generalizing inversions of permutations.
» They showed g-rook equivalence is the same as that a rook equivalence.
» If \; > i, they came out with

m_1
T
qg—1

Ra(Fx,q) = H[A,- —i+1],, [m]g ==
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~» Homogeneous Spaces

e K. Ding (2001) depicted (1) as the Poincaré series for certain
algebraic variety X .

@ X, is a smooth Schubert variety inside the partial flag variety Xpn
where N still stands for the board with n rows and N columns.

@ The Schubert varieties popping up this way are those of the form X,
where w is a 312-avoiding permutation .

> Likewise, the fundamental cohomology class [X,,] is performed by a
Schubert polynomial indexed by a dominant or 123-avoiding
permutation.

Proposition (Can-D)
The number of 312-avoiding permutations of {1, ...n} whose associated
Schubert variety is a toric variety is 2"
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Main Characters ~» 15 Hilbert's problem
@ Let V be a vector space over k. The Grassmannian variety is
Gr(d,n) :={W C V : W linear subspace and dim(W) = d}.

e.g. Gr(2,4) i.e. W = span(wy, w») and span(er, es, e3, &3) = k*.

4 4
W e Gr(2,4) <= W = span {Z alje, Y agjej} € Gr(2,4)

=1 j=1
<= rows of My, are independent vectors in k*
<= some 2 x 2 minors of My, is NOT zero
—  pip(Mw) =det[ay |i<pq<2 # 0 for some j1 < jo
—_————
Pliicker relations

~wp A wp = Z Pii(Mw)ej, N €.
1<)z
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Proposition (Pliicker embedding)

Gr(d, n) ———— P =P (A*K")

span(vl, aoag Vd) _ [Vl AR Vd]

@ 1) is injective.

e imGr(d, n) is closed in P(\* k™).
n he, d+1pn
. ST , = dim(imh,) >n—d

Vi VAW

e.g. Gr(2,4) ~» 3 x 3 minors of [h,] € Mats ~~ 16 cubic equations!
e Gr(d,n) can be covered by A4"=9) since

Ad(n—d) ¢ V; C i RowSpan[ly | C] .

» Gr(d, n) is irreducible and dim(Gr(d, n)) = d(n — d)
» Gr(2,4) = V(anass — a3 + a1aa3)
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Example: Schubert Cells

—e2 — 3e3 — €4 + bes — 4eg + Ser
W :=span{ ex + 3e3 + 2e4 — Tes + 6eg — 5e7 p € Gr(3,7)
264 — 265 + 4e6 — 2e7

0 -1 -3 -1 6 -4 6

My =10 1 3 2 -7 6 -5
o 0 0o 2 -2 4 =2
1/2 1/2 —1/4 0000 0 01
1/2 1/2 1/4 |Mw=]0 00 1 -1 2
3/2 5/2 —7/4 0130 520
0 000G O 1
My =10 0 0 1 % % 0|~ Schubert Cell .
0 1 x 0 = 0

Recipe: cut out the d x d staircase from the upper left corner of the matrix,

and let \; be the distance from the edge of the staircase to the 1 in row i.
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Schubert Cell X,

For a partition A contained in a rectangle d(n — d) is the set of points of
Gr(d, n) whose row echelon matrix has corresponding partition:

n—d—l—i—)\,-
Xy =4 W eGr(d,n) | dim(W N {e,...,e)) =1, <r<
n—d+i—)\;+1

@ The numbers n — d + i — \; are the positions of the 1’s in the matrix
counted from the right.

@ Since each * can be any complex number, we have X, = A9("—K)—=[A
as a set, and so dim X\ = d(n—d) — |A|.
» In particular, dim Gr(d, n) = d(n — d).
@ The d-subsets of [n] is in bijection with partitions whose Ferrer
diagram is contained in the d(n — d) rectangle.
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Closed subsets: Schubert Variety

The Schubert Variety is the closure of X} i.e.,
Xy = {W € Gr(d,n) | dim(V N {er,...,en_adr1-x) > i}.

e.g. In Gr(2,4),
- - 0 001
X{1’3} — X [ — { (0 1 % 0) } — X(272) L X(271).

@ Every Schubert variety is a disjoint union of Schubert cells.

e How many lines intersect four lines in R3?

» ~~Given a line in R3, the familygc lines intersecting it can be seen
Gr(2,4) as the Schubert variety X2 4}
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Flag Variety

@ Let V be a vector space over k with dim V = n and let
1<t <---<ty<n. A flag of type ({1,...,44) in V is a sequence
of linear subspaces V4 C Vo, C --- C Vg C V, where dim(V;) = ¢;.
» A complete flag is a flag of type (1,2, ..., n).

o The flag variety Fy, ., (V) parametrizes flags in V i.e, it is the set

Fortg(V) =
{(Vl,..., Vd) € Gr(ﬁl, \/) X oo X Gr(ﬁd, \/) | ViC...C Vd}.

In particular, the complete flag variety 71 n(V) := Fo(V)
parametrizes complete flags in V.
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Proposition
The subset Fy, . ¢,(V) of Gr(f1, V) x --- x Gr({g, V) is closed and hence
Fo,...0,(V) is a projective variety.

e For every ({1, ...,4q), the flag variety is irreducible.

@ Its dimension is given by
d
D Gl =)y, gt — .
i=1

-1
For Fe(V), its dimension is mn )
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Example: more tools from combinatorics

o Fo =span{2e; + 3e3, €1 + e + 4e3, €1 + 2, — 3e3}

1/2 0 0 02 3 01 3/2
o [ =172 1 0 11 4|=[10 52
117 2/17 —2/17) \1 2 -3 00 1

span{e; + 3/2e3, €1 + 5/2e3, €3} ~» canonical form .

» The canonical form determines a permutation matrix: the position of
the leading 1's. This permutation dictates the position of the flag F,

w.r.t the reference flag Eq, := (ey, €, €3).

@ Ways of seeing permutations:

= O O
Il
AR
N =
w N
= W
~—
Il
N
w
=

1
0
0

o = O
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Schubert Cells in F,(k)

Let w € S, be a permutation. The Schubert Cell of w is defined by
Xy ={We € Fr:dim(W, N Ey) = #{i < p: w(i) < g}for all p,q}

where Eg is the standard flag generated by the unit vectors e,i1_;.

@ The dim(X,,) is the # of %'s in its matrix.
» The max # of x's occurs when
wo = n(n—1)---321 ~~ dim(X,,) = n(n —1)/2.
e Forany w € S, inv(w) = #{(i,j) : i <j and w(i) > w(j)}.
» The # of «'s in X,, is the inversion number inv(w)

o Define sy,...,5,_1 € S, to be the adjacent transpositions in S,,. Then
the length of w, ¢(w) is the smallest number k for which there
exists a decomposition w = s;, - - - 5, .

> {(w) = inv(w).
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Keeping the example...

0 1 3/2 0 1 x
Fe=1]1 0 5/2 € Xo13 = 1 0 %x|:xeC
0 0 1 0 0 1

e dim(X231) =2 = inv(231).
e X, = w - Bis a B-orbit using the right B action i.e.,

010\ (/bis 0 0 bys bra O
10 0|[bas oo 0 |=|bs 0 0
0 0 1/ \b33 b3p b31 b33z b3p b3
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Schubert Variety

Let w € S, be a permutation. The Schubert Variety of w is defined by

X = {We € Fpp: dim(W, N E,) > #{i < p: w(i) < g}for all p, q}

@ The closure relation on Schubert varieties defines a cool partial order

X, = |_| X, ~ Bruhat order

v<w

where v < w <= for every representation of w as a product of £(w)
transpositions s;, one can remove ¢(w) — ¢(v) of the transpositions to
obtain a representation of v as a subword in the same relative order.
» w = 45132 = 5,535,515,535 and this contains s3s,s3 = 14325 as a
nonconsecutive subword and so 14325 < 45132.
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Ding's Variety
Let A= (0 < A1 <--- < \y) be a partition.

Dy :={Ve € F1. 4y | Vi CC¥} ~+ Ding variety
X = {Ve € Fa.a) | dim(Vi N E)) > #{k <7 wie < j}

D), coincides with X, C f(ly...yd)(V), where w is the unique permutation
given by w; = max({1, ..., \i} \ {wa,...,wi_1}).

@ If d = n, then w identifies the maximal rook placement on the Ferrers
board B,.

» For each /, place a rook in row i and column w;, where w; is the
rightmost square in row i whose column doesn't contain a rook.

@ Permutation w obtained this way are exactly those which are
312-avoiding .

» There do not exist i, j, k for which i < j < k and w; > wy > w;.
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Actions

@ A G-variety is an affine variety X endowed with an action of the

GxX —%— X
algebraic group G, which is a morphism.

(8:x) —— g-x
@ x € X is called fixed point if gx = x for all g € G.
» XC:={x € X : x fixed point}
e For x € X, the orbit of x is Gx :={gx: g€ G} C X.
» The orbit map is ay: G — X; g — gx.
e The stabilizer of x is Stabg(x) = Gy := {g € G : gx = x}.
» For any Y C X, we define Stabg(Y):={ge€ G:gy=y,Vy € Y}.

@ For two G-varieties X, Y a morphism ¢ : X — Y is said to be
G-equivariant whether ¢(gx) = gp(x) for all g € G and x € X.
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Homogeneous Spaces

Proposition
Let X be a G-variety.
o XC is a closed subset in X.
Gy and Stabg(Y) are closed subgroups of G.

o
@ For any x € X the orbit Gx is open in its closure Gx.
o

If Y C X is closed, the normalizer Ng(Y') is closed subgroup of G.

A variety X is homogeneous whether it is equipped with a
transitive action of an alg. group G.
» A homogeneous space is (X, x) where X is homogeneous and x € X
is called base point .

Since a; }(hx) = hGy = dim Gx = dim Gx = dim G — dim Gy

» Gx contains a closed orbit.

(]
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Example
GL, x Gr(d, n) —2 Gr(d, n)

" GL,-equivariant, it is a unique GL,-orbit.

GL xP(AC") —22 P(AC")
a1

=]
StabGLn(<e1,...,ed>) : (6’1

I
o
I

@ P ~» maximal parabolic subgroup of GL,, and Gr(d, n) is an

homogeneous space GL, /P.

ai,d

ad,d
0

a1,d+1

ad,d+1
ad+1,d+1

an,d+1

» dim(Gr(d, n)) = dimGL, —dim P = d(n — d)

al,n

ad,n
ad+1,n

an,n
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Pick E; = (ej,, ....,ei,) € Gr(d,n) where 1 < iy < --- < ig <n.
@ The E; are the T-fixed points in Gr(d, n), where

3171 0 . 0
0 ao - 0
Th = . o _ ~» maximal torus of GL,
0 0 - an,

e Gr(d, n) is the disjoint union if the orbits BE;, where

a1l a2 0 adn
0 a2 -+ an

B, := _ o _ ~> Borel subgroup of GL,
0 0 . an7n

@ The Schubert Cells in Gr(d, n) are the orbits X; := BE; and the
closure in Gr(d, n) of X, is called Schubert variety X;.
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Examples

GL, x F(C") —%— F(C")
is homogeneous.

(B,F) —— BF

Parabolic Av e
Stabg,(E1s s Eg) := Poy0y(C) = | 7 7% ;
0 0 Ag

A; € GLd,-fd,-,l

Hence,
GLn /Py, 0y(C) ——— Foy,. 0, (V)

ngl,...,Ed((C) — (gV1>"'7ng)'
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@ The set of T-fixed points is identified with S,. Namely, each w € S,
corresponds to a coordinate flag

{0} C (ew(1)) C (ew(r)s ew(2)) C -~ C Vi =C",

denotes as E,, := wk

@ S5, = Ng(T)/T ~~ Weyl group , F, is the disjoint union of the
orbits X,, := BF,, = UF,, where w € S,,.

e When X, we acquire
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Current work...

Theorem (Karuppuchamy)

A Schubert variety X,, is a toric variety if and only if the Weyl group
element w is a product of distinct simple reflections.

Theorem (Lakshmibai-Sandhya)

Xw is non-singular if and only if w has no subsequence with the same
relative order as 3412 and 4231.

Proposition (Can-D)

The number of 312-avoiding permutations of {1, ...n} whose associated
Schubert variety is a toric variety is 2" 1.
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Classification: Schubert variety of complexity 0

Theorem

The following are equivalent

(1) Xu is a toric variety i.e., of complexity O.

(2) Xw is a smooth toric variety.

(3) w avoids the patterns 321 and 3412.

(4) A reduced decomposition of w consists of distinct letters.

(5) Xy is isomorphic to a Bott-Samelson variety.

(6) The Bruhat interval [e, w] is isomorphic to By, the Boolean

algebra of rank ¢(w).

(7) The Bruhat interval polytope Q. is combinatorially equivalent to
the {(w)-dimensional cube.
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Classification: Schubert variety of complexity 1

Theorem

For a permutation w € S, the following are equivalent

(1) Xy is smooth and of complexity 1.

(2) w contains the pattern 321 exactly once and avoids the pattern 3412.

(3) There exists a reduced decomposition of w containing s;s;y+1s; as a
factor and no other repetitions.

(4) X is isomorphic to a flag Bott-Samelson variety Z,,, . ., such
that r = {(w) — 2, wyx = sjsj15j for some 1 < k <r, w; =s;, for
i # k, and ji, ..., jk—1,Jk+1s---»JrsJ,J + 1 are pairwise distinct.

(5) The Bruhat interval [e, w] is isomorphic to S, X By(,)—3

(6) The Bruhat interval polytope Q. is combinatorially equivalent to
the product of the hexagon and the cube [/(")=3,
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Thank You/Gracias!

“Combinatorics is the nanotechnology of mathematics”
Sara Billey
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