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The Stem  combinatorics
A partition of a number n is a non-increasing sequence of
non-negative integer λ = (λ1 ≥ λ2 ≥ · · · ≥ λd ) such that

n =
∑

λi := |λ|, `(λ) := |λi : λi 6= 0| length

I e.g. 7 = · · · = 4 + 2 + 1 = · · · , λ = (4, 2, 1) `(λ) = 3
The diagram of λ

dg(λ) := {(i , j) ∈ N2 | 1 ≤ i ≤ d , 1 ≤ j ≤ λi}

The Ferrer board Fλ of a partition λ is the left-aligned partial grid
of boxes in which the i th row from the top has λi boxes.

I e.g.
λ1

λ2

λ3

λ = (4, 2, 1) = (λ1, λ2, λ3)
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A placement of d rooks on a given Fλ is a subset of d squares in Fλ.
A non-attacking placement of d rooks on Fλ is a subset of d
squares in Fλ such no two squares lie in the same row or column.

R

R

Non-attacking placement on Fλ

Let rd (λ) be the number of non-attacking placements of d rooks on
Fλ. The rook polynomial of λ is

Rλ(x) :=
n∑

d=0
rd (λ)xk

Two partiions λ and ν are rook-equivalence if the have the same
rook polynomial i.e., rd (λ) = rd (ν) for all d ≥ 0.
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Since R(2,2)(x) = 2x2 + 4x + 1 = R(3,1)(x) = R(2,1,1)(x),
I Kaplansky & Riordan (1946) considered the problem of when Fλ and

Fν are rook-equivalent.

Garcia & Remmel (1984) defined a q-rook polynomial Rd (Fλ, q)
that q-count the d-rook placements on Fλ by a certain inversion
statistic generalizing inversions of permutations.

I They showed q-rook equivalence is the same as that a rook equivalence.
I If λi ≥ i , they came out with

Rn(Fλ, q) =
n∏

i=1
[λi − i + 1]q, [m]q := qm − 1

q − 1 . (1)

5 / 34



 Homogeneous Spaces

K. Ding (2001) depicted (1) as the Poincaré series for certain
algebraic variety Xλ .

Xλ is a smooth Schubert variety inside the partial flag variety XNn

where Nn still stands for the board with n rows and N columns.
The Schubert varieties popping up this way are those of the form Xw
where w is a 312-avoiding permutation .

I Likewise, the fundamental cohomology class [Xw ] is performed by a
Schubert polynomial indexed by a dominant or 123-avoiding

permutation.

Proposition (Can-D)
The number of 312-avoiding permutations of {1, ...n} whose associated
Schubert variety is a toric variety is 2n−1.
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Main Characters  15th Hilbert’s problem

Let V be a vector space over k. The Grassmannian variety is

Gr(d , n) := {W ⊂ V : W linear subspace and dim(W ) = d}.

e.g. Gr(2, 4) i.e. W = span(w1,w2) and span(e1, e2, e3, e4) = k4.

W ∈ Gr(2, 4) ⇐⇒ W = span


4∑

j=1
a1jej ,

4∑
j=1

a2jej

 ∈ Gr(2, 4)

⇐⇒ rows of MW are independent vectors in k4

⇐⇒ some 2× 2 minors of MW is NOT zero
⇐⇒ pj1j2(MW )︸ ︷︷ ︸

Plücker relations

:= det[ap,jq ]1≤p,q≤2 6= 0 for some j1 < j2

 w1 ∧ w2 =
∑
j1<j2

pj1j2(MW )ej1 ∧ ej2 .
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Proposition (Plücker embedding)

Gr(d , n) P(n
d)−1 = P

(∧k kn
)

span(v1, ..., vd ) [v1 ∧ · · · ∧ vd ]

ψ

.

ψ is injective.
im Gr(d , n) is closed in P(

∧k kn).

I kn Λd+1 kn

v v ∧ ω

hω

, ⇒ dim(im hω) ≥ n − d

e.g. Gr(2, 4) 3× 3 minors of [hω] ∈Mat4  16 cubic equations!
Gr(d , n) can be covered by Ad(n−d) since

Ad(n−d) VI ; C RowSpan[Id | C ]φ .

I Gr(d , n) is irreducible and dim(Gr(d , n)) = d(n − d)
I Gr(2, 4) = V(a12a34 − a13a24 + a14a23)
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Example: Schubert Cells

W := span


−e2 − 3e3 − e4 + 6e5 − 4e6 + 5e7
e2 + 3e3 + 2e4 − 7e5 + 6e6 − 5e7

2e4 − 2e5 + 4e6 − 2e7

 ∈ Gr(3, 7)

MW :=

0 −1 −3 −1 6 −4 6
0 1 3 2 −7 6 −5
0 0 0 2 −2 4 −2


1/2 1/2 −1/4

1/2 1/2 1/4
3/2 5/2 −7/4

MW =

0 0 0 0 0 0 1
0 0 0 1 −1 2 0
0 1 3 0 −5 2 0


M ′W :=

0 0 0 0 0 0 1
0 0 0 1 ∗ ∗ 0
0 1 ∗ 0 ∗ ∗ 0

 Schubert Cell .

Recipe: cut out the d×d staircase from the upper left corner of the matrix,
and let λi be the distance from the edge of the staircase to the 1 in row i .
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Schubert Cell Xλ

For a partition λ contained in a rectangle d(n − d) is the set of points of
Gr(d , n) whose row echelon matrix has corresponding partition:

Xλ :=

W ∈ Gr(d , n) | dim(W ∩ 〈e1, ..., er 〉) = i ,
n − d + i − λi
≤ r ≤

n − d + i − λi+1


The numbers n − d + i − λi are the positions of the 1′s in the matrix
counted from the right.
Since each ∗ can be any complex number, we have Xλ = Ad(n−k)−|λ|

as a set, and so dim Xλ = d(n − d)− |λ|.
I In particular, dim Gr(d , n) = d(n − d).

The d-subsets of [n] is in bijection with partitions whose Ferrer
diagram is contained in the d(n − d) rectangle.
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Closed subsets: Schubert Variety
The Schubert Variety is the closure of Xλ i.e.,

Xλ := {W ∈ Gr(d , n) | dim(V ∩ 〈e1, ..., en−d+1−λi ) ≥ i}.

e.g. In Gr(2, 4),

X {1,3} = X =
{(

0 0 0 1
0 1 ∗ 0

)}
= X(2,2) t X(2,1).

Every Schubert variety is a disjoint union of Schubert cells.
How many lines intersect four lines in R3?

I  Given a line in R3, the family of lines intersecting it can be seen
Gr(2, 4) as the Schubert variety X{2,4}

How many points W ∈ Gr(2, 4) are in the intersection of 4 copies of
the Schubert variety X (2,1) each w.r.t a different basis?
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Flag Variety

Let V be a vector space over k with dimk V = n and let
1 ≤ `1 < · · · < `d ≤ n. A flag of type (`1, ..., `d ) in V is a sequence
of linear subspaces V1 ⊆ V2 ⊆ · · · ⊆ Vd ⊆ V , where dimk(Vi ) = `i .

I A complete flag is a flag of type (1, 2, ..., n).

The flag variety F `1,...,`d (V ) parametrizes flags in V i.e., it is the set

F `1,...,`d (V ) :=
{(V1, ...,Vd ) ∈ Gr(`1,V )× · · · × Gr(`d ,V ) | V1 ⊆ · · · ⊆ Vd}.

In particular, the complete flag variety F1,...,n(V ) := F•(V )
parametrizes complete flags in V .
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Proposition
The subset F `1,...,`d (V ) of Gr(`1,V )× · · · × Gr(`d ,V ) is closed and hence
F `1,...,`d (V ) is a projective variety.

For every (`1, ..., `d ), the flag variety is irreducible.
Its dimension is given by

d∑
i=1

`i (`i+1 − `i ), `d+1 = n.

I For F•(V ), its dimension is n(n − 1)
2 .
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Example: more tools from combinatorics
F• = span{2e2 + 3e3, e1 + e2 + 4e3, e1 + 2e2 − 3e3}

!

 1/2 0 0
−1/2 1 0
1/17 2/17 −2/17


0 2 3

1 1 4
1 2 −3

 =

0 1 3/2
1 0 5/2
0 0 1


span{e2 + 3/2e3, e1 + 5/2e3, e3} canonical form .

I The canonical form determines a permutation matrix: the position of
the leading 1’s. This permutation dictates the position of the flag F•
w.r.t the reference flag E• := 〈e1, e2, e3〉.

Ways of seeing permutations:0 1 0
1 0 0
0 0 1

 =
(

1 2 3
2 3 1

)
= 231
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Schubert Cells in Fn(k)

Let w ∈ Sn be a permutation. The Schubert Cell of w is defined by

Xw := {W• ∈ Fn : dim(Wp ∩ Eq) = #{i ≤ p : w(i) ≤ q}for all p, q}

where Eq is the standard flag generated by the unit vectors en+1−i .
The dim(Xw ) is the # of ∗’s in its matrix.

I The max # of ∗’s occurs when
w0 = n(n − 1) · · · 321 dim(Xw0 ) = n(n − 1)/2.

For any w ∈ Sn, inv(w) = #{(i , j) : i < j and w(i) > w(j)}.
I The # of ∗’s in Xw is the inversion number inv(w)

Define s1, ..., sn−1 ∈ Sn to be the adjacent transpositions in Sn. Then
the length of w , `(w) is the smallest number k for which there
exists a decomposition w = si1 · · · sik .

I `(w) = inv(w).
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Keeping the example...

F• :=

0 1 3/2
1 0 5/2
0 0 1

 ∈ X213 =


0 1 ∗

1 0 ∗
0 0 1

 : ∗ ∈ C


dim(X231) = 2 = inv(231).
Xw = w · B is a B-orbit using the right B action i.e.,0 1 0

1 0 0
0 0 1


b1,3 0 0

b2,3 b2,2 0
b3,3 b3,2 b3,1

 =

b2,3 b2,2 0
b1,3 0 0
b3,3 b3,2 b3,1


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Schubert Variety

Let w ∈ Sn be a permutation. The Schubert Variety of w is defined by

Xw := {W• ∈ Fn : dim(Wp ∩ Eq) ≥ #{i ≤ p : w(i) ≤ q}for all p, q}

The closure relation on Schubert varieties defines a cool partial order

Xw =
⊔

v≤w
Xv  Bruhat order

where v ≤ w ⇐⇒ for every representation of w as a product of `(w)
transpositions si , one can remove `(w)− `(v) of the transpositions to
obtain a representation of v as a subword in the same relative order.

I w = 45132 = s2s3s2s1s4s3s2 and this contains s3s2s3 = 14325 as a
nonconsecutive subword and so 14325 ≤ 45132.
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Ding’s Variety

Let λ = (0 ≤ λ1 ≤ · · · ≤ λd ) be a partition.

Dλ := {V• ∈ F (1,...,d) | Vi ⊂ Cλi} Ding variety

Xw :=
{

V• ∈ F (1,...,d) | dim(Vi ∩ Ej) ≥ #{k ≤ i : wk ≤ j}
}

Dλ coincides with Xw ⊂ F (1,...,d)(V ), where w is the unique permutation
given by wi = max({1, ..., λi} \ {w1, ...,wi−1}).

If d = n, then w identifies the maximal rook placement on the Ferrers
board Bλ.

I For each i , place a rook in row i and column wi , where wi is the
rightmost square in row i whose column doesn’t contain a rook.

Permutation w obtained this way are exactly those which are
312-avoiding .

I There do not exist i , j , k for which i < j < k and wi > wk > wj .
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Actions

A G-variety is an affine variety X endowed with an action of the

algebraic group G ,
G × X X

(g , x) g · x

α

which is a morphism.

x ∈ X is called fixed point if gx = x for all g ∈ G .
I X G := {x ∈ X : x fixed point}

For x ∈ X , the orbit of x is Gx := {gx : g ∈ G} ⊂ X .
I The orbit map is αx : G → X ; g 7→ gx .

The stabilizer of x is StabG(x) = Gx := {g ∈ G : gx = x}.
I For any Y ⊂ X , we define StabG (Y ) := {g ∈ G : gy = y ,∀y ∈ Y }.

For two G-varieties X ,Y a morphism ϕ : X → Y is said to be
G-equivariant whether ϕ(gx) = gϕ(x) for all g ∈ G and x ∈ X .
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Homogeneous Spaces

Proposition
Let X be a G-variety.

X G is a closed subset in X.
Gx and StabG(Y ) are closed subgroups of G.
For any x ∈ X the orbit Gx is open in its closure Gx.
If Y ⊂ X is closed, the normalizer NG(Y ) is closed subgroup of G.

A variety X is homogeneous whether it is equipped with a
transitive action of an alg. group G .

I A homogeneous space is (X , x) where X is homogeneous and x ∈ X
is called base point .

Since α−1
x (hx) = hGx =⇒ dim Gx = dim Gx = dim G − dim Gx

I Gx contains a closed orbit.

24 / 34



Example
GLn×Gr(d , n) Gr(d , n)

GL×P(
∧
Cn) P(

∧
Cn)

α1

ψ

α2

GLn-equivariant, it is a unique GLn-orbit.

StabGLn (〈e1, ..., ed〉) := P =





a1,1 · · · a1,d a1,d+1 · · · a1,n
... . . . ...

... . . . ...
ad ,1 · · · ad ,d ad ,d+1 · · · ad ,n

0 · · · 0 ad+1,d+1 · · · ad+1,n
... . . . ...

... . . . ...
0 · · · 0 an,d+1 · · · an,n




P  maximal parabolic subgroup of GLn, and Gr(d , n) is an
homogeneous space GLn /P.

I dim(Gr(d , n)) = dim GLn− dim P = d(n − d)
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Pick EI = 〈ei1 , ...., eid 〉 ∈ Gr(d , n) where 1 ≤ i1 < · · · < id ≤ n.
The EI are the T -fixed points in Gr(d , n), where

Tn =




a1,1 0 · · · 0

0 a2,2 · · · 0
...

... . . . ...
0 0 · · · an,n


 maximal torus of GLn

Gr(d , n) is the disjoint union if the orbits BEI , where

Bn :=




a1,1 a1,2 · · · a1,n

0 a2,2 · · · a2,n
...

... . . . ...
0 0 · · · an,n


 Borel subgroup of GLn

The Schubert Cells in Gr(d , n) are the orbits XI := BEI and the
closure in Gr(d , n) of XI is called Schubert variety XI .
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Examples
GLn×F(Cn) F(Cn)

(B,F ) BF

α

is homogeneous.

StabGLn (E1, ...,Ed ) :=

Parabolic︷ ︸︸ ︷
P`1,...,`d (C) =


A1 ∗ · · · ∗

0 A2
. . . ...

... . . . . . . ∗
0 · · · 0 Ad

 ,
Ai ∈ GLdi−di−1

Hence,
GLn /P`1,...,`d (C) F `1,...,`d (V )

gP`1,...,`d (C) (gV1, ..., gVd ).
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The set of T -fixed points is identified with Sn. Namely, each w ∈ Sn
corresponds to a coordinate flag

{0} ⊂ 〈ew(1)〉 ⊂ 〈ew(1), ew(2)〉 ⊂ · · · ⊂ Vn = Cn,

denotes as Ew := wE
Sn ∼= NG(T )/T  Weyl group , Fn is the disjoint union of the
orbits Xw := BFw = UFw where w ∈ Sn.
When Xw , we acquire

Xw =
⊔

v∈W ,v≤w
Xv
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Current work...

Theorem (Karuppuchamy)
A Schubert variety Xw is a toric variety if and only if the Weyl group
element w is a product of distinct simple reflections.

Theorem (Lakshmibai-Sandhya)
Xw is non-singular if and only if w has no subsequence with the same
relative order as 3412 and 4231.

Proposition (Can-D)
The number of 312-avoiding permutations of {1, ...n} whose associated
Schubert variety is a toric variety is 2n−1.
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Classification: Schubert variety of complexity 0

Theorem
The following are equivalent
(1) Xw is a toric variety i.e., of complexity 0.
(2) Xw is a smooth toric variety.
(3) w avoids the patterns 321 and 3412.
(4) A reduced decomposition of w consists of distinct letters.
(5) Xw is isomorphic to a Bott-Samelson variety.
(6) The Bruhat interval [e,w ] is isomorphic to B`(w) the Boolean

algebra of rank `(w).
(7) The Bruhat interval polytope Qe,w is combinatorially equivalent to

the `(w)-dimensional cube.
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Classification: Schubert variety of complexity 1

Theorem
For a permutation w ∈ Sn, the following are equivalent
(1) Xw is smooth and of complexity 1.
(2) w contains the pattern 321 exactly once and avoids the pattern 3412.
(3) There exists a reduced decomposition of w containing si si+1si as a

factor and no other repetitions.
(4) Xw is isomorphic to a flag Bott-Samelson variety Z(w1,...,wr ) such

that r = `(w)− 2, wk = sjsj+1sj for some 1 ≤ k ≤ r , wi = sj , for
i 6= k, and j1, ..., jk−1, jk+1, ..., jr , j , j + 1 are pairwise distinct.

(5) The Bruhat interval [e,w ] is isomorphic to Sn ×B`(w)−3

(6) The Bruhat interval polytope Qe,w is combinatorially equivalent to
the product of the hexagon and the cube I`(w)−3.
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Thank You/Gracias!

“Combinatorics is the nanotechnology of mathematics”
Sara Billey
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